New streamlined models for genetic counseling and genetic testing have recently been developed in response to increasing demand for cancer genetic services. To improve access and decrease wait times, we implemented an oncology clinic-based genetic testing model for breast and ovarian cancer patients in a publicly funded population-based health care setting in British Columbia, Canada. This observational study evaluated the oncology clinic-based model as compared to a traditional one-on-one approach with a genetic counsellor using a multi-gene panel testing approach. The primary objectives were to evaluate wait times and patient reported outcome measures between the oncology clinic-based and traditional genetic counselling models. Secondary objectives were to describe oncologist and genetic counsellor acceptability and experience. Wait times from referral to return of genetic testing results were assessed for 400 patients with breast and/or ovarian cancer undergoing genetic testing for hereditary breast and ovarian cancer from June 2015 to August 2017. Patient wait times from referral to return of results were significantly shorter with the oncology clinic-based model as compared to the traditional model (403 vs. 191 days; p < 0.001). A subset of 148 patients (traditional n = 99; oncology clinic-based n = 49) completed study surveys to assess uncertainty, distress, and patient experience. Responses were similar between both models. Healthcare providers survey responses indicated they believed the oncology clinic-based model was acceptable and a positive experience. Oncology clinic-based genetic testing using a multi-gene panel approach and post-test counselling with a genetic counsellor significantly reduced wait times and is acceptable for patients and health care providers.
Lynch syndrome is defined by the presence of germline mutations in mismatch repair (MMR) genes. Several models have been recently devised that predict mutation carrier status (Myriad Genetics, Wijnen, Barnetson, PREMM and MMRpro models). Families at moderate-high risk for harboring a Lynch-associated mutation, referred to the BC Cancer Agency (BCCA) Hereditary Cancer Program (HCP), underwent mutation analysis, immunohistochemistry and/or microsatellite testing. Seventy-two tested cases were included. Twenty-five patients were mutation positive (34.7%) and 47 were mutation negative (65.3%). Nineteen of 43 patients who were both microsatellite stable and normal on immunohistochemistry for MLH1 and MSH2 were also genotyped for mutations in these genes; all 19 were negative for MMR gene mutations. Model-derived probabilities of harboring a MMR gene mutation in the proband were calculated and compared to observed results. The area under the ROC curves were 0.75 (95%CI; 0.63-0.87), 0.86 (0.7-0.96), 0.89 (0.82-0.97), 0.89 (0.81-0.98) and 0.93 (0.86-0.99) for the Myriad, Barnetson, Wijnen, MMRpro and PREMM models, respectively. The Amsterdam II criteria had a sensitivity and specificity of 0.76 and 0.74, respectively, in this cohort. The PREMM model demonstrated the best performance for predicting carrier status based on the positive likelihood ratios at the >10%, >20% and >30% probability thresholds. In this referred cohort, the PREMM model had the most favorable concordance index and predictive performance for carrier status based on the positive LR. These prediction models (PREMM, MMRPro and Wijnen) may soon replace the Amsterdam II and revised Bethesda criteria as a prescreening tool for Lynch mutations.In Canada and the United States, colorectal cancer (CRC) is the third most common diagnosed cancer and the second leading cause of all cancer deaths. 1,2 Among those affected, up to 15% of CRC cases can be attributed to individuals with inherited susceptibilities, most notably the familial adenomatous polyposis (FAP) and the hereditary nonpolyposis colorectal cancer (HNPCC) syndromes. 3 The HNPCC syndrome is more common than FAP, accounting for up to 5% of all CRC diagnoses; whereas FAP accounts for less than 1%. 3 Multiple adenomatous polyps, often greater than 100 arising at an early age, characterize the FAP phenotype. The clinical manifestation of the HNPCC syndrome phenotype is not as apparent as its FAP counterpart. Patients with HNPCC are often asymptomatic until pre-
Background: Recent guidelines recommend consideration of germline testing for all newly diagnosed pancreatic ductal adenocarcinoma (PDAC). The primary aim of this study was to determine the burden of hereditary cancer susceptibility in PDAC.A secondary aim was to compare genetic testing uptake rates across different modes of genetic counselling. Patients and Methods: All patients diagnosed with PDAC in the province of British Columbia, Canada referred to a population-based hereditary cancer program were eligible for multi-gene panel testing, irrespective of cancer family history. Any healthcare provider or patients themselves could refer. Results: A total of 305 patients with PDAC were referred between July 2016 and January 2019. Two hundred thirty-five patients attended a consultation and 177 completed index germline genetic testing. 25/177 (14.1%) of unrelated patients had a pathogenic variant (PV); 19/25 PV were in known PDAC susceptibility genes with cancer screening or risk-reduction implications. PDAC was significantly associated with PV in ATM (OR, 7.73; 95% CI, 3.10 to 19.33, P = 6.14E-05) when comparing age and gender and ethnicity-matched controls tested on the same platform. The overall uptake rate for index testing was 59.2% and was significantly higher with 1-on-1 consultations and group consultations compared to telehealth consultations (88.9% vs 82.9% vs 61.8%, P < .001). | 4005CREMIN Et al. Conclusion:In a prospective clinic-based cohort of patients with PDAC referred for testing irrespective of family history, germline PV were detected in 14.1%. PV in ATM accounted for half of all PVs and were significantly associated with PDAC.These findings support recent guidelines and will guide future service planning in this population. K E Y W O R D Sgenetic consultation, hereditary cancer, pancreatic ductal adenocarcinoma
Introduction: Genetic testing for hereditary cancer syndromes (HCSs) can improve health outcomes through cancer risk mitigation strategies. Effective communication between tested individuals and their family members is key to reducing the hereditary cancer burden. Our objective was to develop a patient portal to improve familial communication for patients undergoing HCS genetic testing, followed by an early-phase evaluation. Methods: The portal was developed following the completion of 25 semistructured interviews with individuals having undergone HCS susceptibility testing at BC Cancer. Following initial development, we recruited patients and healthcare providers to provide critical feedback informing portal refinement. Quantitative feedback was summarized using descriptive statistics, and qualitative feedback was synthesized by two reviewers who engaged in iterative discussion within the research team to prioritize recommendations for integration. Results: The patient portal includes four key components consisting of (a) targeted educational information about hereditary cancer and HBOC syndrome associated risks and testing process overview, (b) a general frequently asked questions 'FAQ' page informed by the qualitative interviews, patient partner feedback, and consultation with the HCP, (c) guidance to support familial communication including a video developed with a patient partner describing their lived experience navigating the communication process and (d) a series of lay summaries of genetic test findings to support information transfer among family members. Thirteen healthcare providers and seven patients participated in user testing. Domains within which
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.