The existing demilitarization stockpile contains large quantities of , colored srnoke, spotting dye, and pyrotechnic munitions. For many years, these munitions have been stored in magazines at locations within the continental United States awaiting cornpletion of the lifecycle. The open air burning of these munitions has been shown to produce toxic gases that are detrimental to human health and harmful to the environment. Prior efforts to incinerate these compositions have also produced toxic emissions and have been unsuccessful. , , • ? ; ACKNOWLEDGMENT R. Hanush and J. Aiken participated in generating and evaluating the experimental data on salt deposition presented in this report. B. Mills and S. Johnston suggested Concept A. Larry Hoffa provided drafting assistance.
Abstractn entirely new class of light-weight reversible hydrides was recently discovered (the Tidoped alanates)[lI. These NaAIH,-based materials have demonstrated reversible hydrogen storage capacities of up to 5 wt%, nearly 4 times the gravimetrically density of commercial metal hydrides. For this reason, they have been considered a breakthrough for hydrogen storage in fuel cell vehicles. This project is the first to publish the use of alanates for the generation of electrical power and the first demonstration of a hydride-fueled elevatedtemperature PEM Fuel Cell. Because the kinetics of hydrogen uptake and release by the alanate improves with elevated temperatures, novel concepts were tested for the purpose of developing a highly efficient stand-alone power system. A major focus of this work was on the modeling, design, construction and testing of an integrated fuel cell stack and hydrogen storage system that eliminates the need of complicated heat transfer systems and media. After extensive modeling efforts, a proof-of-concept system was built that employs an integrated fuel cell stack and hydride beds that balancing the generation of fuel cell waste heat with the endothermic release of hydrogen from the alanates. Our demonstration unit was capable of greater than one hour of operation on a single charge of hydrogen from the integrated 173 gram alanate bed. In addition, composite hydride materials with synergistic reaction heats were evaluated and tested to enhance the operational performance of the alanates. The composites provide a unique opportunity to utilize the heat produced from hydriding classic metal hydrides to improve both absorption and desorption rates of the alanates. A particular focus of the mixed storage materials work was to balance the thermodynamics and kinetics of the hydrides for start-up conditions. Modeling of the sorption properties proved invaluable in evaluating the optimum composition of hydrides. The modeling efforts were followed by full validation by experimental measurements. This project successfully completed the proof-of-concept goals and generated a powerful set of tools for optimizing the complete power-generation system. It has also created a new direction for hydrogen power generation as well the potential for new R&D based on this work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.