Current treatments for autoimmune disorders rely on non-specific immunomodulatory and global immunosuppressive drugs, which show a variable degree of efficiency and are often accompanied by side effects. In contrast, strategies aiming at inducing antigen-specific tolerance promise an exclusive specificity of the immunomodulation. However, although successful in experimental models, peptide-based tolerogenic “inverse” vaccines have largely failed to show efficacy in clinical trials. Recent studies showed that repetitive T cell epitopes, coupling of peptides to autologous cells, or peptides coupled to nanoparticles can improve the tolerogenic efficacy of peptides, suggesting that size and biophysical properties of antigen constructs affect the induction of tolerance. As these materials bear hurdles with respect to preparation or regulatory aspects, we wondered whether conjugation of peptides to the well-established and clinically proven synthetic material polyethylene glycol (PEG) might also work. We here coupled the T cell epitope OVA 323–339 to polyethylene glycols of different size and structure and tested the impact of these nano-sized constructs on regulatory (Treg) and effector T cells in the DO11.10 adoptive transfer mouse model. Systemic vaccination with PEGylated peptides resulted in highly increased frequencies of Foxp3 + Tregs and reduced frequencies of antigen-specific T cells producing pro-inflammatory TNF compared to vaccination with the native peptide. PEGylation was found to extend the bioavailability of the model peptide. Both tolerogenicity and bioavailability were dependent on PEG size and structure. In conclusion, PEGylation of antigenic peptides is an effective and feasible strategy to improve Treg-inducing, peptide-based vaccines with potential use for the treatment of autoimmune diseases, allergies, and transplant rejection.
Peptide-based therapy is a promising strategy for antigen-specific immunosuppression to treat or even heal autoimmune diseases with significantly reduced adverse effects compared to conventional therapies. However, there has been no major success due to the drawbacks of native peptides, i.e., limited bioavailability. Considering the importance and limitations of peptide-based therapies for treatment of autoimmune diseases, we designed and constructed oligoglycerol (OG)- and polyglycerol (PG)-based peptide conjugates. They were evaluated for their biological activity (in vitro and in vivo), bioavailability, and tolerogenic potential. Among the OG- and PG-peptide constructs, PG-peptide constructs exhibited an extended bioavailability compared to OG-peptide constructs and unconjugated peptide. Interestingly, size, structure, and linker chemistry played a critical role for the tolerogenic capacity of the constructs. The PG-peptide construct bound via an ester linkage was the most tolerogenic conjugate, while the PG-peptide construct bound via an amide induced stronger proliferation, but also higher TNF production and lower frequencies of Foxp3(+) regulatory T-cells. Therefore, we conclude that PG-peptide conjugates bound via an ester linkage are not only promising candidates for tolerogenic vaccination, but also open a new avenue toward the application of peptides for the treatment of autoimmune diseases.
Parasite proteins containing repeats are essential invasion ligands, important for their ability to evade the host immune system and to induce immunosuppression. Here, the intrinsic suppressive potential of repetitive structures within parasite proteins was exploited to induce immunomodulation in order to establish self-tolerance in an animal model of autoimmune neurological disease.We tested the tolerogenic potential of fusion proteins containing repeat sequences of parasites linked to self-antigens. The fusion constructs consist of a recombinant protein containing repeat sequences derived from the S-antigen protein (SAg) of Plasmodium falciparum linked to a CD4 T cell epitope of myelin. They were tested for their efficacy to control the development of experimental autoimmune encephalomyelitis (EAE), In addition, we used the DO11.10 transgenic mouse model to study the immune mechanisms involved in tolerance induced by SAg fusion proteins.We found that repeated sequences of P. falciparum SAg protein linked to self-epitopes markedly protected mice from EAE. These fusion constructs were powerful tolerizing agents not only in a preventive setting but also in the treatment of ongoing disease. The tolerogenic effect was shown to be antigen-specific and strongly dependent on the physical linkage of the T cell epitope to the parasite structure and on the action of anti-inflammatory cytokines like IL-10 and TGF-β. Other mechanisms include down-regulation of TNF-α accompanied by increased numbers of FoxP3 + cells. This study describes the use of repetitive structures from parasites linked to defined T cell epitopes as an effective method to induce antigen-specific tolerance with potential applicability for the treatment and prevention of autoimmune diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.