Objectives:Little is known about the impact of HIV infection on biological ageing in sub-Saharan Africa. The study aimed to assess biological ageing in South African HIV-infected adults and HIV-seronegative individuals using two validated biomarkers, telomere length and CDKN2A expression (a mediator of cellular senescence).Design:A case–control study.Methods:Two hundred and thirty-six HIV-infected adults aged at least 30 years and 250 age and sex frequency matched HIV-seronegative individuals were recruited from clinics in township communities in Cape Town. Biological ageing was evaluated by measurement of telomere length and CDKN2A expression in peripheral blood leukocytes.Results:The median ages of the HIV-infected and HIV-seronegative participants were 39 and 40 years, respectively. Among HIV-infected participants, 87.1% were receiving antiretroviral therapy (ART), their median CD4+ cell count was 468 cells/μl and 84.3% had undetectable viral load. Both biomarkers were validated against chronological age in HIV-seronegative individuals. Telomere length was significantly shorter in HIV-infected individuals than in HIV-seronegative individuals (mean relative T/S ratio ±SE:0.91 ± 0.007 vs. 1.07 ± 0.008, P < 0.0001). CD2NKA expression was higher in HIV-infected participants than in HIV-seronegative individuals (mean expression: 0.45 ± 0.02 vs. 0.36 ± 0.03, P = 0.003). Socioeconomic factors were not associated with biological ageing in HIV-infected participants. However, in participants on ART with undetectable viral load, biomarker levels indicated greater biological ageing in those with lower current CD4+ cell counts.Conclusion:Telomere length and CDKN2A expression were both consistent with increased biological ageing in HIV-infected individuals. Prospective studies of the impact of HIV on biological ageing in sub-Saharan Africa are warranted.
Exploiting oxidative stress has recently emerged as a plausible strategy for treatment of human cancer, and antioxidant defenses are implicated in resistance to chemotherapy and radiotherapy. Targeted suppression of antioxidant defenses could thus broadly improve therapeutic outcomes. Here, we identify the AMPK-related kinase NUAK1 as a key component of the antioxidant stress response pathway and reveal a specific requirement for this role of NUAK1 in colorectal cancer. We show that NUAK1 is activated by oxidative stress and that this activation is required to facilitate nuclear import of the antioxidant master regulator NRF2: Activation of NUAK1 coordinates PP1β inhibition with AKT activation in order to suppress GSK3β-dependent inhibition of NRF2 nuclear import. Deletion of NUAK1 suppresses formation of colorectal tumors, whereas acute depletion of NUAK1 induces regression of preexisting autochthonous tumors. Importantly, elevated expression of NUAK1 in human colorectal cancer is associated with more aggressive disease and reduced overall survival. This work identifies NUAK1 as a key facilitator of the adaptive antioxidant response that is associated with aggressive disease and worse outcome in human colorectal cancer. Our data suggest that transient NUAK1 inhibition may provide a safe and effective means for treatment of human colorectal cancer via disruption of intrinsic antioxidant defenses. .
Abstract:The discovery that the 5'AMP-activated protein kinase, AMPK, serves to link the tumour suppressors LKB1 and the Tuberous Scelorsis Complex (TSC), and functions to slow macromolecular synthesis through attenuation of the mechanistic Target of Rapamycin Complex 1 (mTORC1), revealed a role for AMPK in tumour suppression. On the other hand, the well-recognized role of AMPK in maintaining ATP homeostasis, through suppression of anabolism and promotion of catabolism, as well as the role of AMPK in neutralising reactive oxygen species (ROS), via maintenance of NADPH-dependent reductive capacity, point to tumour-protective roles in the context of metabolic stress, which is a key feature of many solid tumours. A growing number of studies thus suggest a duality of functions for AMPK that are either pro-or anti-cancer, depending upon context. Importantly, AMPK is comprised of 3 subunits and multiple isoforms exist for all three, allowing for different permutations to assemble and the potential for specific AMPK complexes to regulate distinct cellular Author Manuscript Monteverde et al. FEBS ReviewThis article is protected by copyright. All rights reserved processes. Moreover, certain subunits of the AMPK complex are frequently overexpressed in a spectrum of human cancer types, suggesting an outright oncogenic function for specific AMPK complexes. Adding complexity to this picture, the catalytic AMPK alpha subunits belong to a family of 14 kinases that can all be activated by LKB1 and studies are beginning to reveal a similar duality of roles in cancer for other members of the AMPK-related kinase family.Cancer cells divert enormous resources into fuelling the growth required to sustain their unscheduled proliferation. Commonly arising oncogenic mutations resulting in RAS and PI3K pathway activation, p53 inactivation or MYC overexpression, directly impinge upon core cellular metabolism, at once driving proliferation and at the same time signalling to cells to redirect the breakdown products of nutrients into the synthesis of macromolecules required for cell growth [1, 2]. This diversion of nutrients comes at a cost however and cancer cells must continuously rebalance their rate of macromolecular synthesis and cell growth with the energetic cost of supporting that growth, measured in ATP. The fragility of this balancing act is underscored by the observation that cancer cells often exhibit exquisite sensitivity to nutrient deprivation, rapidly undergoing cell death where non-transformed counterparts respond by downregulating proliferative signalling and undergoing arrest [3][4][5][6]. In the context of a growing solid tumour, cancer cells are continuously exposed to a range of pathophysiological metabolic strains, including nutrient limitation, hypoxia and microenvironment acidification, owing to the inefficient and disorganised nature of the tumour vasculature.Indeed, poorly vascularised tumour regions typically show high levels of necrotic cell death [7]. Strategies to exploit the intrinsic metabolic vulnerabilities...
Transplantable murine models of ovarian high grade serous carcinoma (HGSC) remain an important research tool. We previously showed that ID8, a widely-used syngeneic model of ovarian cancer, lacked any of the frequent mutations in HGSC, and used CRISPR/Cas9 gene editing to generate derivatives with deletions in Trp53 and Brca2. Here we have used one ID8 Trp53 −/− clone to generate further mutants, with additional mutations in Brca1, Pten and Nf1, all of which are frequently mutated or deleted in HGSC. We have also generated clones with triple deletions in Trp53, Brca2 and Pten. We show that ID8 Trp53 −/−;Brca1 −/− and Trp53 −/−;Brca2 −/− cells have defective homologous recombination and increased sensitivity to both platinum and PARP inhibitor chemotherapy compared to Trp53 −/−. By contrast, loss of Pten or Nf1 increases growth rate in vivo, and reduces survival following cisplatin chemotherapy in vivo. Finally, we have also targeted Trp53 in cells isolated from a previous transgenic murine fallopian tube carcinoma model, and confirmed that loss of p53 expression in this second model accelerates intraperitoneal growth. Together, these CRISPR-generated models represent a new and simple tool to investigate the biology of HGSC, and the ID8 cell lines are freely available to researchers.
Exposure of laboratory mice to carbon nanotubes mimics exposure to asbestos, from initial and chronic inflammation, through loss of the same tumour-suppressor pathways and eventual sporadic development of malignant mesothelioma. Fibres of a similar nature may pose significant health risks to humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.