Reintroductions are important components of conservation and recovery programs for rare plant species, but their long‐term success rates are poorly understood. Previous reviews of plant reintroductions focused on short‐term (e.g., ≤3 years) survival and flowering of founder individuals rather than on benchmarks of intergenerational persistence, such as seedling recruitment. However, short‐term metrics may obscure outcomes because the unique demographic properties of reintroductions, including small size and unstable stage structure, could create lags in population growth. We used time‐to‐event analysis on a database of unusually well‐monitored and long‐term (4–28 years) reintroductions of 27 rare plant species to test whether life‐history traits and population characteristics of reintroductions create time‐lagged responses in seedling recruitment (i.e., recruitment time lags [RTLs]), an important benchmark of success and indicator of persistence in reintroduced populations. Recruitment time lags were highly variable among reintroductions, ranging from <1 to 17 years after installation. Recruitment patterns matched predictions from life‐history theory with short‐lived species (fast species) exhibiting consistently shorter and less variable RTLs than long‐lived species (slow species). Long RTLs occurred in long‐lived herbs, especially in grasslands, whereas short RTLs occurred in short‐lived subtropical woody plants and annual herbs. Across plant life histories, as reproductive adult abundance increased, RTLs decreased. Highly variable RTLs were observed in species with multiple reintroduction events, suggesting local processes are just as important as life‐history strategy in determining reintroduction outcomes. Time lags in restoration outcomes highlight the need to scale success benchmarks in reintroduction monitoring programs with plant life‐history strategies and the unique demographic properties of restored populations. Drawing conclusions on the long‐term success of plant reintroduction programs is premature given that demographic processes in species with slow life‐histories take decades to unfold.
Two species of mangrove trees of IndoPacific origin have naturalized in tropical Atlantic mangrove forests in South Florida after they were planted and nurtured in botanic gardens. Two Bruguiera gymnorrhiza trees that were planted in the intertidal zone in 1940 have given rise to a population of at least 86 trees growing interspersed with native mangrove species Rhizophora mangle, Avicennia germinans and Laguncularia racemosa along 100 m of shoreline; the population is expanding at a rate of 5.6% year -1 .Molecular genetic analyses confirm very low genetic diversity, as expected from a population founded by two individuals. The maximum number of alleles at any locus was three, and we measured reduced heterozygosity compared to native-range populations. Lumnitzera racemosa was introduced multiple times during the 1960s and 1970s, it has spread rapidly into a forest composed of native R. mangle, A. germinans, Laguncularia racemosa and Conocarpus erectus and now occupies 60,500 m 2 of mangrove forest with stem densities of 24,735 ha -1 . We estimate the population growth rate of Lumnitzera racemosa to be between 17 and 23% year -1 . Populations of both species of naturalized mangroves are dominated by young individuals. Given the long life and water-dispersed nature of propagules of the two exotic species, it is likely that they have spread beyond our survey area. We argue that the species-depauperate nature of tropical Atlantic mangrove forests and close taxonomic relatives in the more species-rich Indo-Pacific region result in the susceptibility of tropical Atlantic mangrove forests to invasion by Indo-Pacific mangrove species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.