The gas phase transfer of substances from carton board (CB) and corrugated box board (CBB) through intervening layers to foods was studied. Substances covering a boiling point range of 252-425 degrees C and a range of polarities were incorporated into CB and CBB secondary packaging. Benzophenone was present in some CB materials. Where it was not already present in CB or CBB secondary packaging, it was deliberately incorporated for transfer studies. Transfer of substances was measured in nine foodstuff types stored in the secondary packaging at ambient and sub-ambient temperature. The foods were packaged in primary packaging materials that would be used in retail. Two food types were packed and stored in both single- and multipack formats. Foods were sampled at 0, 10, 30, 90 and 200 days and analysed by gas chromatography-mass spectrometry after high-performance size exclusion chromatography clean-up. Percentage transfer was between 0 and 100%. The overall trends were increased transfer of substances with increased storage time; a more rapid transfer of the more volatile substances compared with the less volatile ones and higher levels of transfer of the more volatile substances. No transfer of diheptyl phthalate (DHP) (bp 425 degrees C) as an incorporated substance was detected to any foods over the test period. The presence of an additional layer of packaging (multipack versus single pack) was shown to reduce transfer up to fourfold over 200 days and to increase the lag period for transfer. In terms of slowing transfer, metallized PP/PP laminate proved a more effective barrier than PP which was more effective than paper. It is postulated that there is a cut-off threshold for transfer at ambient and sub-ambient temperatures. Substances that are less volatile than the cut-off are anticipated not to transfer from secondary packaging to foods stored for up to 200 days, where the substances are present in the packaging at or below the levels tested in this study (up to 1 mg dm-2). In this study the volatility cut-off threshold lay between that of 2,2-dimethoxyphenylacetophenone (2,2-DMPAP) (an incorporated substance with bp 352 degrees C) and DHP. Ideally, the cut-off threshold should be expressed in terms of vapour pressure in the packaging material. In practical terms, it may be more appropriate to express as partition coefficient as this is simpler to determine experimentally.
In an on-going study of the materials and techniques of twentieth-century Canadian painters, similar conservation issues in oil paintings by various artists have been noted. These include delamination and lifting paint, zinc soap protrusions and surface efflorescence or accretions. Examples of these phenomena are presented. Delamination in an oil painting from 1956 was found to be related to an underlayer with a high concentration of zinc fatty acid salts (zinc soaps). In two paintings that date from 1936 and 1937, zinc soaps have aggregated and formed protrusions that have broken through the paint surface. The protrusions were analysed using a combination of SEM-EDX, GCMS and FTIR. The FTIR spectra were compared to those of synthetic zinc palmitate, stearate, azelate and oleate. The combined GCMS and FTIR results indicate that the protrusions contain primarily zinc palmitate and stearate. Peak splitting in the FTIR spectrum, which is not observed in synthetic zinc palmitate, stearate or binary palmitate-stearate salts, is likely due to structural distortion. The final example describes a disfiguring surface accretion on a 1952-1954 painting caused by the reaction of zinc with a low molecular weight carboxylic acid (2-hydroxypropanoic or lactic acid).
This article describes the identification of a hafting adhesive on an antler point, slotted for microblade insertion. The adhesive, found in the slots of the point, would have held the microblades in place. Radiocarbon dated to 7310 ± 40 B.P. (uncalibrated), the point is one of the oldest and best-preserved artifacts recovered from the melting alpine ice patches in southwestern Yukon, Canada. Because the artifact was frozen, the organic components have not degraded and a detailed chemical analysis was possible. Analyses of residue in the slots of the point by Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry showed that a conifer resin adhesive was used. The high concentration of diterpene resin acids with an abietane or pimerane skeleton confirmed a Pinaceae source for the resin. There were no chemical markers to indicate that the resin had been strongly heated to produce tar or pitch. Based on a comparison with five Pinaceae resins from trees common to southern Yukon, the resin from the slotted point most closely resembles the chemical profile of spruce (Picea sp.). The identification of this hafting adhesive on a slotted point adds significantly to our understanding of early hunting technology in Yukon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.