OPA1 is a ubiquitously expressed, nuclear dynamin-related GTPase, targeted to the inner mitochondrial membrane, which plays a role in mitochondrial fusion. Mutations in the OPA1 gene on chromosome 3q28-qter are associated with autosomal dominant optic atrophy (ADOA), the most common inherited optic neuropathy, in which retinal ganglion cells (RGCs) are lost and visual acuity is impaired from an early age. We have generated a novel ENU-induced mutant mouse carrying a protein-truncating nonsense mutation in opa1 in order to explore the pathophysiology of ADOA. The heterozygous mutation, B6; C3-Opa1(Q285STOP), located in exon 8 immediately before the central dynamin-GTPase, leads to approximately 50% reduction in opa1 protein in retina and all tissues on western analysis. The homozygous mutation is embryonic lethal by 13.5 days post coitum, demonstrating the importance of Opa1 during early development. Fibroblasts taken from adult heterozygous mutant mice show an apparent alteration in morphology, with an increase in mitochondrial fission and fragmentation. Heterozygous mutants show a slow onset of degeneration in the optic nerve electron microscopy. Furthermore, they demonstrate a functional reduction in visual function on testing with the optokinetic drum and the circadian running wheel. These findings indicate that the opa1 GTPase contains crucial information required for the survival of RGCs and that Opa1 is essential for early embryonic survival. The Opa1 +/- mice described here provide a means to directly investigate the cellular pathophysiology of OPA1 ADOA.
Alternate splicing of serotonin (5-hydroxytryptamine; 5-HT) 2C receptor (5-HT2CR) pre-RNA is negatively regulated by the small nucleolar RNA, Snord115, loss of which is observed in nearly all individuals with Prader-Willi Syndrome (PWS), a multigenic disorder characterised by hyperphagia and obesity. Given the role of the 5-HT2CR in the regulation of ingestive behaviour we investigated the pathophysiological implications of Snord115 deficiency on 5-HT2CR regulated appetite in a genotypically relevant PWS mouse model (PWS-IC). Specifically, we demonstrate that loss of Snord115 expression is associated with increased levels of hypothalamic truncated 5-HT2CR pre-mRNA. The 5-HT2CR promotes appetite suppression via engagement of the central melanocortin system. Pro-opiomelancortin (Pomc) mRNA levels within the arcuate nucleus of the hypothalamus (ARC) were reduced in PWS-IC mice. We then went on to assess the functional consequences of these molecular changes, demonstrating that PWS-IC mice are unresponsive to an anorectic doses of a 5-HT2CR agonist and that this is associated with attenuated activation of POMC neurons within the ARC. These data provide new insight into the significance of Htr2c pre-mRNA processing to the physiological regulation of appetite and potentially the pathological manifestation of hyperphagia in PWS. Furthermore, these findings have translational relevance for individuals with PWS who may seek to control appetite with another 5-HT2CR agonist, the new obesity treatment lorcaserin.Electronic supplementary materialThe online version of this article (doi:10.1186/s13041-016-0277-4) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.