The Drosophila egg develops through closely coordinated activities of associated germline and somatic cells. An essential aspect of egg development is the differentiation of the somatic follicle cells into several distinct subpopulations with specific functions. Here we demonstrate that the graded activity of the Janus kinase (JAK) pathway, stimulated by the Unpaired ligand, patterns the anterior-posterior axis of the follicular epithelium. Different levels of JAK activity instruct adoption of distinct anterior cell fates. Further, the coordinated activities of the JAK/STAT and epidermal growth factor receptor (EGFR) pathways are required to specify the posterior terminal cell fate. We propose that Upd secreted from the polar cells may act as a morphogen to stimulate A/P-derived follicular fates through JAK pathway activation.
Janus kinase (JAK) pathway activity is an integral part of signaling through a variety of ligands and receptors in mammals. The extensive re-utilization and pleiotropy of this pathway in vertebrate development is conserved in other animals as well. In Drosophila melanogaster, JAK signaling has been implicated in embryonic pattern formation, sex determination, larval blood cell development, wing venation, planar polarity in the eye, and formation of other adult structures. Here we describe several roles for JAK signaling in Drosophila oogenesis. The gene for a JAK pathway ligand, unpaired, is expressed specifically in the polar follicle cells, two pairs of somatic cells at the anterior and posterior poles of the developing egg chamber. Consistent with unpaired expression, reduced JAK pathway activity results in the fusion of developing egg chambers. A primary defect of these chambers is the expansion of the polar cell population and concomitant loss of interfollicular stalk cells. These phenotypes are enhanced by reduction of unpaired activity, suggesting that Unpaired is a necessary ligand for the JAK pathway in oogenesis. Mosaic analysis of both JAK pathway transducers, hopscotch and Stat92E, reveals that JAK signaling is specifically required in the somatic follicle cells. Moreover, JAK activity is also necessary for the initial commitment of epithelial follicle cells. Many of these roles are in common with, but distinct from, the known functions of Notch signaling in oogenesis. Consistent with these data is a model in which Notch signaling determines a pool of cells to be competent to adopt stalk or polar fate, while JAK signaling assigns specific identity within that competent pool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.