Sex determination mechanisms differ among animal species, but it is not clear how these differences evolve. New sex determiners may arise in response to sexual conflicts, which occur when traits benefit one sex but hinder the other. Here we identified the genetic basis for the orange-blotch (OB) color pattern, a trait under sexually antagonistic selection in the cichlid fish of Lake Malawi, East Africa. The OB phenotype is due to a cis-regulatory mutation in the Pax7 gene. OB provides benefits of camouflage to females, but disrupts the species-specific male color patterns used for mate recognition. We suggest that the resulting sexual conflict at OB has been resolved by selection for a novel female sex determination locus, promoting its invasion into populations with an ancestral male sex determination system.
Several models have been proposed to suggest how the evolution of sex determining mechanisms might contribute to speciation. Here we describe the inheritance of sex in 19 fish species from the rapidly evolving flock of cichlids in Lake Malawi, Africa. We found that many of these species have a male heterogametic (XY) system on linkage group 7. Some species also segregate for a female heterogametic (ZW) system on linkage group 5 which is coincident with a dominant orange-blotch (OB) color pattern in females. The ZW system is epistatically dominant to the XY system when both are segregating within a family. Several lines of evidence suggest that additional sex-determining loci are segregating in some species. These results are consistent with the idea that genetic conflicts play an important role in the evolution of these species flocks and suggest that evolution of sex-determining mechanisms has contributed to the radiation of cichlid fishes in East Africa.
Visual sensitivity can be tuned by differential expression of opsin genes. Among African cichlid fishes, seven cone opsin genes are expressed in different combinations to produce diverse visual sensitivities. To determine the genetic architecture controlling these adaptive differences, we analysed genetic crosses between species expressing different complements of opsin genes. Quantitative genetic analyses suggest that expression is controlled by only a few loci with correlations among some genes. Genetic mapping identifies clear evidence of trans‐acting factors in two chromosomal regions that contribute to differences in opsin expression as well as one cis‐regulatory region. Therefore, both cis and trans regulation are important. The simple genetic architecture suggested by these results may explain why opsin gene expression is evolutionarily labile, and why similar patterns of expression have evolved repeatedly in different lineages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.