Abstract-Advances in immunosuppression have decreased the incidence of acute rejection, but the development of vasculopathy in the coronary arteries of transplants continues to limit the survival of cardiac allografts. Transplant vasculopathy has also been referred to as accelerated graft arteriosclerosis because it has features of arteriosclerosis, but it is limited to the graft and develops over a period of months to years. Although the pathological features of transplant vasculopathy are well defined, the causative mechanisms are not completely understood. This review focuses on the mechanisms by which antibody and complement can cause or contribute to coronary vasculopathy in cardiac transplants. Antibodies and complement can have independent effects, but the combination of antibodies and complement with inflammatory cells has greater pathogenic potential for the endothelial and smooth muscle cells of the coronary arteries.
BACKGROUND.: Previously, we reported that transcripts of immunoglobulins were increased in coronary arteries dissected from cardiac transplants with arteriopathy, but the prevelance and patterns of B cell and plasma cell infiltration in cardiac allografts has not been documented. METHODS.: In this study, we documented the frequency and distribution of B cells and plasma cells in 16 cardiac transplants with advanced chronic rejection that were explanted during a second transplant procedure. Coronary arteries with pathologically confirmed allograft vasculopathy and controls with native atherosclerosis were immunohistologically stained for markers of T cells, B cells, plasma cells, IgG subclasses, C4d, CD21, and CXCL13. RESULTS.: We found that B cells and plasma cells were prevalent in most of the samples analyzed (14 of 16) and were distributed in three patterns: adventitial nodules, diffuse adventitial infiltrates, and neointimal infiltrates. These cells were found most frequently in nodules, some of which had distinct compartmentalization and granular C4d deposits on follicular dendritic cells (FDCs) that typify tertiary lymphoid nodules. FDCs also stained for CD21 and CXCL13. Diffuse infiltrates of B cells and plasma cells were found in fibrotic areas of the neointima and adventitia. Only a minority of control coronaries with atherosclerosis contained B cells. CONCLUSIONS.: B cells and plasma cell infiltrates are consistent findings in and around coronary arteries with allograft vasculopathy and are significantly more frequent than in coronaries with native atherosclerosis. The presence of C4d on FDCs in tertiary lymphoid nodules suggests active antigen presentation.
In the last decade, two advances have shifted attention from cellular rejection to antibody-mediated rejection (AMR) of cardiac transplants. First, more sensitive diagnostic tests for detection of AMR have been developed. Second, improvements in immunosuppression have made severe acute cellular rejection uncommon, but have had less effect on AMR. Antibodies can contribute to graft rejection by activation of complement, by activation of vascular endothelial and smooth muscle cells, and by activation of neutrophils, macrophages or natural killer cells. Because acute rejection is a risk factor for chronic rejection in all types of organ transplants, it is has been proposed that AMR can cause chronic rejection. Small animal models need to be developed to gain further insights into AMR and the role of antibodies in chronic graft arteriopathy. This article reviews the current clinical data and existing mouse models for AMR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.