Eusociality represents a major transition in evolution and is typified by cooperative brood care and reproductive division of labor between generations. In bees, this division of labor allows queens and workers to phenotypically specialize. Worker traits associated with helping are thought to be crucial to the fitness of a eusocial lineage, and recent studies of honey bees (genus Apis) have found that adaptively evolving genes often have worker-biased expression patterns. It is unclear however if worker-biased genes are disproportionately acted on by strong positive selection in all eusocial insects. We undertook a comparative population genomics study of bumble bees (Bombus) and honey bees to quantify natural selection on queen- and worker-biased genes across two levels of social complexity. Despite sharing a common eusocial ancestor, genes, and gene groups with the highest levels of positive selection were often unique within each genus, indicating that life history and the environment, but not sociality per se, drives patterns of adaptive molecular evolution. We uncovered differences in the contribution of queen- and worker-biased genes to adaptive evolution in bumble bees versus honey bees. Unlike honey bees, where worker-biased genes are enriched for signs of adaptive evolution, genes experiencing positive selection in bumble bees were predominately expressed by reproductive foundresses during the initial solitary-founding stage of colonies. Our study suggests that solitary founding is a major selective pressure and that the loss of queen totipotency may cause a change in the architecture of selective pressures upon the social insect genome.
The bee subgenus Dialictus (Halictidae: Lasioglossum) displays a large array of behaviours including solitary behaviour, eusociality, and social parasitism. Socially parasitic Dialictus share a suite of morphological traits; these could result from shared ancestry, but given their functional significance, could also have resulted from adaptive convergence. A combined morphological and molecular phylogenetic approach was used to test for monophyly of North American socially parasitic Dialictus. Two data sets were used in the phylogenetic analyses. First, short mitochondrial DNA sequences from previous taxonomic studies of North American Dialictus, including six social parasites, were used because of the broad taxon sampling they provide. These data were analysed in combination with a set of 40 morphological characters, including a large proportion of characters associated with social parasitism. Phylogenetic analysis of the combined DNA barcode and morphology data set resolves two distinct lineages of social parasite. The second data set was based on three genes (cytochrome c oxidase subunit 1, elongation factor 1α, and long‐wavelength rhodopsin), but with sparser taxon sampling, including one representative from each putative social parasite‐lineage. This also supported dual origins of social parasitism among North American Dialictus. The evolution of social parasitism is discussed. © The Willi Hennig Society 2011.
Nesting biology and phenology in an aggregation of the primitively eusocial ground-nesting bee Halictus farinosus were studied at Green Canyon, Utah from May to August, 2010. Nest architecture was typical of the genus. Nests were small with an average of 3.5 worker and 13.5 reproductive brood per colony. Most workers were mated (77.5%) and had ovarian development (73.4%). The queen-worker size differential was moderate (8.8% for head width and 6.2% for wing length), indicating that sociality in this species is of intermediate strength compared to other social Halictus species. Results from 2010 were compared with those from 1977/1978 and 2002. Varying weather patterns in the years of study led to changes in phenological milestones: in the colder and wetter spring of 2010, nesting behavior was delayed by up to two weeks compared to the other years. While nest productivity was comparable among years, in 2010 the size difference between queens and workers was significantly larger than in 2002, indicating an effect of annual variation in weather conditions on social parameters in this species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.