The mammalian retromer protein complex, which consists of three proteins -Vps26, Vps29, and Vps35 -in association with members of the sorting nexin family of proteins, has been implicated in the trafficking of receptors and their ligands within the endosomal/lysosomal system of mammalian cells. A bioinformatic analysis of the mouse genome identified an additional transcribed paralog of the Vps26 retromer protein, which we termed Vps26B. No paralogs were identified for Vps29 and Vps35. Phylogenetic studies indicate that the two paralogs of Vps26 become evident after the evolution of the chordates. We propose that the chordate Vps26-like gene published previously be renamed Vps26A to differentiate it from Vps26B. As for Vps26A, biochemical characterization of Vps26B established that this novel 336 amino acid residue protein is a peripheral membrane protein. Vps26B co-precipitated with Vps35 from transfected cells and the direct interaction between these two proteins was confirmed by yeast 2-hybrid analysis, thereby establishing Vps26B as a subunit of the retromer complex. Within HeLa cells, Vps26B was found in the cytoplasm with low levels at the plasma membrane, while Vps26A was predominantly associated with endosomal membranes. Within A549 cells, both Vps26A and Vps26B co-localized with actin-rich lamellipodia at the cell surface. These structures also co-localized with Vps35. Total internal reflection fluorescence microscopy confirmed the association of Vps26B with the plasma membrane in a stable HEK293 cell line expressing cyan fluorescent protein (CFP)-Vps26B. Based on these observations, we propose that the mammalian retromer complex is located at both endosomes and the plasma membrane in some cell types.
Using a subtractive hybridisation approach, we enriched for genes likely to play a role in embryonic development of the mammalian face and other structures. This was achieved by subtracting cDNA derived from adult mouse liver from that derived from 10.5 dpc mouse embryonic branchial arches 1 and 2. Random sequencing of clones from the resultant library revealed that a high percentage correspond to genes with a previously established role in embryonic development and disease, while 15% represent novel or uncharacterised genes. Whole mount in situ hybridisation analysis of novel genes revealed that approximately 50% have restricted expression during embryonic development. In addition to expression in branchial arches, these genes showed a range of expression domains commonly including neural tube and somites. Notably, all genes analysed were found to be expressed not only in the branchial arches but also in the developing limb buds, providing support for the hypothesis that development of the limbs and face is likely to involve analogous molecular processes.
The locus for autosomal recessive infantile cerebellar ataxia (CLA3 or SCAR6) has been mapped to chromosome 20q11-q13 in a single Norwegian pedigree. We identified a relatively uncharacterised mouse gene Tp53inp2, and showed that its human orthologue mapped within this candidate interval. Tp53inp2 appears to encode a mammalian-specific protein with homology to the two Tp53inp1 isoforms that respond to cellular stress and interact with p53. We show that Tp53inp2 expression is highly restricted during mouse embryogenesis, with strong expression in the developing brain and spinal cord, as well as in the sensory and motor neuron tracts of the peripheral nervous system. Given this expression pattern, the neurological phenotype of CLA3 and the chromosomal localisation of TP53INP2, we searched the coding region for mutations in samples from individuals from the CLA3 pedigree. Our failure to detect causative mutations suggests that alterations in the coding region of TP53INP2 are not responsible for ataxia in this family, although we cannot rule out changes in non-coding elements of this gene. Developmental Dynamics 236: 843-852, 2007.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.