Rows of comb-like or tufted gill rakers in the oral cavity of suspension-feeding fishes (for example, herring, anchovies and tilapia) have been thought to serve as (1) non-porous barriers that direct particle-laden water to the sticky oral roof, where particles are retained as water exits from the oral cavity, (2) conventional dead-end filters that sieve particles from water exiting between rakers, or (3) sticky filters that retain particles encountered by a hydrosol filtration mechanism. Here we present data from computational fluid dynamics and video endoscopy in suspension-feeding fish indicating that the rakers of three distantly related species function instead as a crossflow filter. Particles are concentrated inside the oral cavity as filtrate exits between the rakers, but particles are not retained on the rakers. Instead, the high-velocity crossflow along the rakers carries particles away from the raker surfaces and transports the particles towards the oesophagus. This crossflow prevents particles from clogging the gaps between the rakers, and solves the mystery of particle transport from the rakers to the oesophagus.
Heterogeneous nuclear ribonucleoproteins, hnRNPs, are RNA-binding proteins that play crucial roles in controlling gene expression. In Drosophilaoogenesis, the hnRNP Squid (Sqd) functions in the localization and translational regulation of gurken (grk) mRNA. We show that Sqd interacts with Hrb27C, an hnRNP previously implicated in splicing. Like sqd, hrb27C mutants lay eggs with dorsoventral defects and Hrb27C can directly bind to grk RNA. Our data demonstrate a novel role for Hrb27C in promoting grk localization. We also observe a direct physical interaction between Hrb27C and Ovarian tumor (Otu), a cytoplasmic protein implicated in RNA localization. We find that some otu alleles produce dorsalized eggs and it appears that Otu cooperates with Hrb27C and Sqd in the oocyte to mediate proper grklocalization. All three mutants share another phenotype, persistent polytene nurse cell chromosomes. Our analyses support dual cooperative roles for Sqd,Hrb27C and Otu during Drosophila oogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.