Minimally invasive point-of-care diagnostic devices are of great interest for rapid detection of biomarkers in diverse settings. Although blood is the most common source of biomarkers, interstitial fluid (ISF) is an alternate body fluid that does not clot or contain red blood cells that often complicate analysis. However, ISF is difficult to collect. In this study, we assessed the utility of a microneedle patch to sample microliter volumes of ISF in a simple and minimally invasive manner. We demonstrated the use of ISF collected in this way for therapeutic drug monitoring by showing similar vancomycin pharmacokinetic profiles in ISF and serum from rats. We also measured polio-specific neutralizing antibodies and anti-polio IgG in ISF similar to serum in rats immunized with polio vaccine. These studies demonstrate the potential utility of ISF collected by microneedle patch in therapeutic drug monitoring and immunodiagnostic applications.
An automated high-throughput immunomagnetic separation (IMS) method for diagnosing exposure to the organophosphorus nerve agents (OPNAs) sarin (GB), cyclohexylsarin (GF), VX, and Russian VX (RVX) was developed to increase sample processing capacity for emergency response applications. Diagnosis of exposure to OPNAs was based on the formation of OPNA adducts to butyrylcholinesterase (BuChE). Data reported with this method represent a ratio of the agent-specific BuChE adduct concentration, relative to the total BuChE peptide concentration that provides a nonactivity measurement expressed as percent adducted. All magnetic bead transfer steps and washes were performed using instrumentation in a 96-well format allowing for simultaneous extraction of 86 clinical samples plus reference materials. Automating extractions increased sample throughput 50-fold, as compared to a previously reported manual method. The limits of detection, determined using synthetic peptides, were 1 ng/mL for unadducted BuChE and GB-, GF-, VX-, and RVX-adducted BuChE. The automated method was characterized using unexposed serum and serum pools exposed to GB, GF, VX, or RVX. Variation for the measurement of percent adducted was <12% for all characterized quality control serum pools. Twenty-six (26) serum samples from individuals asymptomatic for cholinesterase inhibitor exposure were analyzed using this method, and no background levels of OPNA exposure were observed. Unexposed BuChE serum concentrations measured using this method ranged from 2.8 μg/mL to 10.6 μg/mL, with an average concentration of 6.4 μg/mL.
We have developed a novel immunomagnetic scavenging technique for extracting cholinesterase inhibitors from aqueous matrixes using biological targeting and antibody-based extraction. The technique was characterized using the organophosphorus nerve agent VX. The limit of detection for VX in high-performance liquid chromatography (HPLC)-grade water, defined as the lowest calibrator concentration, was 25 pg/mL in a small, 500 μL sample. The method was characterized over the course of 22 sample sets containing calibrators, blanks, and quality control samples. Method precision, expressed as the mean relative standard deviation, was less than 9.2% for all calibrators. Quality control sample accuracy was 102% and 100% of the mean for VX spiked into HPLC-grade water at concentrations of 2.0 and 0.25 ng/mL, respectively. This method successfully was applied to aqueous extracts from soil, hamburger, and finished tap water spiked with VX. Recovery was 65%, 81%, and 100% from these matrixes, respectively. Biologically based extractions of organophosphorus compounds represent a new technique for sample extraction that provides an increase in extraction specificity and sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.