Inflammation, increased cytokine production, and decreased responsiveness of airway smooth muscle (ASM) to beta-adrenergic agonists are characteristics of asthma. We questioned whether the cytokine tumor necrosis factor-alpha (TNF-alpha) directly impaired beta-adrenergic signal transduction in cultured canine ASM cells. Confluent ASM cells exposed to TNF-alpha (0.1-10 ng/ml) for 72 h showed lower maximal levels of adenylyl cyclase activity in response to isoproterenol (10 ng/ml; 14 +/- 4.3 vs. 7.5 +/- 1.3 pmol adenosine 3',5'-cyclic monophosphate x well(-1) x 20 min(-1), control vs. treated, respectively), despite no changes in beta-adrenergic receptor numbers (maximum number of binding sites = 4.8 +/- 0.72 vs. 4.5 +/- 0.81 fmol/mg protein, control vs. treated, respectively). Adenylyl cyclase activities in response to prostaglandin E1, NaF, or forskolin were not different in treated and untreated cells. These results demonstrate that a cytokine known to be increased during exacerbation of asthmatic symptoms directly impairs beta-adrenergic function in ASM cells and suggests a mechanism by which inflammation impairs beta-adrenergic receptor signal transduction in asthma.
To determine whether chronic oxytocin pretreatment inhibits adenylyl cyclase, we compared adenylyl cyclase activity in membranes prepared from cultured, immortalized rat myometrial cells that were untreated or pretreated for 24 h with oxytocin. Chronic oxytocin pretreatment (1 x 10(-5) M for 24 h) attenuated basal, guanosine triphosphate (1 x 10(-5) M)-, isoproterenol (1 x 10(-4) M)-, forskolin (1 x 10(-5) M)-, MnCl2 (20 mM)- or NaF (1 x 10(-2) M)-stimulated adenylyl cyclase activity by 27 +/- 5% to 39 +/- 11% (n = 6, p < 0.05). Oxytocin pretreatment for 2 h (n = 5) did not produce a significant effect. To understand the mechanism by which oxytocin pretreatment decreased activity of the adenylyl cyclase pathway, we compared effects of pretreatment with either oxytocin or phenylephrine on adenylyl cyclase activity and determined the effects of Gi inhibition and protein kinase C (PKC) depletion. Chronic (24 h) phenylephrine pretreatment (1 x 10(-4) M) had effects similar to those of oxytocin pretreatment (1 x 10(-5) M). PKC depletion with phorbol 12-myristate 13-acetate (1 x 10(-6) M, 41 h) prevented attenuation of adenylyl cyclase activity by oxytocin pretreatment (1 x 10(-5) M for 24 h). Inhibition of Gi by pertussis toxin pretreatment (1.25 microg/ml, 41 h) had no significant effect. These findings suggest that chronic oxytocin pretreatment desensitizes the adenylyl cyclase pathway by a cross-regulatory mechanism that involves activation of Gq and PKC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.