Background The ergogenic effects of dietary supplements on endurance exercise performance are well-established; however, their efficacy in hot environmental conditions has not been systematically evaluated. Objectives (1) To meta-analyse studies investigating the effects of selected dietary supplements on endurance performance and core temperature responses in the heat. Supplements were included if they were deemed to: (a) have a strong evidence base for ‘directly’ improving thermoneutral endurance performance, based on current position statements, or (b) have a proposed mechanism of action that related to modifiable factors associated with thermal balance. (2) To conduct meta-regressions to evaluate the moderating effect of selected variables on endurance performance and core temperature responses in the heat following dietary supplementation. Methods A search was performed using various databases in May 2020. After screening, 25 peer-reviewed articles were identified for inclusion, across three separate meta-analyses: (1) exercise performance; (2) end core temperature; (3) submaximal core temperature. The moderating effect of several variables were assessed via sub-analysis and meta-regression. Results Overall, dietary supplementation had a trivial significant positive effect on exercise performance (Hedges’ g = 0.18, 95% CI 0.007–0.352, P = 0.042), a trivial non-significant positive effect on submaximal core temperature (Hedges’ g = 0.18, 95% CI − 0.021 to 0.379, P = 0.080) and a small non-significant positive effect on end core temperature (Hedges’ g = 0.20, 95% CI − 0.041 to 0.439, P = 0.104) in the heat. There was a non-significant effect of individual supplements on exercise performance (P = 0.973) and submaximal core temperature (P = 0.599). However, end core temperature was significantly affected by supplement type (P = 0.003), which was attributable to caffeine’s large significant positive effect (n = 8; Hedges’ g = 0.82, 95% CI 0.433–1.202, P < 0.001) and taurine’s medium significant negative effect (n = 1; Hedges’ g = − 0.96, 95% CI − 1.855 to − 0.069, P = 0.035). Conclusion Supplements such as caffeine and nitrates do not enhance endurance performance in the heat, with caffeine also increasing core temperature responses. Some amino acids might offer the greatest performance benefits in the heat. Exercising in the heat negatively affected the efficacy of many dietary supplements, indicating that further research is needed and current guidelines for performance in hot environments likely require revision.
Objective Inter-day reliability of sweat measurements, including the absorbent patch and modified iodine-paper techniques, at rest and exercise were evaluated. We further evaluated the effect of iodine paper size and the method of establishing sweat gland activation (sweat gland counting or surface area covered) on reliability. Furthermore, the relationships between all measurement techniques and metabolic heat production [Ḣprod] and evaporative requirement for heat balance [Ėreq] were determined. Method Twelve participants were assessed for whole-body sweat loss (WBSL), local sweat rate (LSR; absorbent patch) and sweat gland activation (SGA; iodine-paper) during rest and sub-maximal cycling at ~200, ~250 and ~300 W/m2 Ḣprod in the heat. Variations in iodine paper (1 x 1 cm-9 x 9 cm) were used to quantify SGA by counting sweat glands or surface area covered. The ‘optimal’ area of SGA was also determined based on the highest density of recruited glands. Results All measures of the sweating response were positively related with Ḣprod and Ėreq (r = 0.53–0.84), with the 9 x 9 cm and 6 x 6 cm iodine paper sizes being the strongest (r = 0.66–0.84) for SGA. Superior inter-day reliability was found for all measures during exercise (CV% = 6–33.2) compared to rest (CV% = 33.5–77.9). The iodine-paper technique was most reliable at 9 x 9 cm (CV% = 15.9) or when the 1 x 1 cm (CV% = 17.6) and 3 x 3 cm (CV% = 15.5) optimal SGA was determined, particularly when measuring the sweat gland number. Significance WBSL, LSR and SGA measurement techniques are sufficiently reliable to detect changes in thermal sweating typically reported. We recommend 9 x 9 cm paper sizes or 1 x 1 cm-3 x 3 cm optimal areas, using either gland counting or surface area to determine SGA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.