Chemotherapy-induced cell death is linked to apoptosis, and there is increasing evidence that multidrug-resistance in cancer cells may be the result of a decrease in the ability of a cell to initiate apoptosis in response to cytotoxic agents. In previous studies, we synthesized two classes of electrophilic tocopheryl quinones (TQ), nonarylating alpha-TQ and arylating gamma- and delta-TQ, and found that gamma- and delta-TQ, but not alpha-TQ, were highly cytotoxic in human acute lymphoblastic leukemia cells (CEM) and multidrug-resistant (MDR) CEM/VLB100. We have now extended these studies on tumor biology with CEM, HL60 and MDR HL60/MX2 human promyelocytic leukemia, U937 human monocytic leukemia, and ZR-75-1 breast adenocarcinoma cells. gamma-TQ, but not alpha-TQ or tocopherols, showed concentration and incubation time-dependent effects on loss of plasma membrane integrity, diminished viable cell number, and stimulation of apoptosis. Its cytotoxicity exceeded that of doxorubicin in HL60/MX2 cells, which express MRP, an MDR-associated protein. Apoptosis was confirmed by TEM, TUNEL, and DNA gel electrophoresis. Kinetic studies showed that an induction period was required to initiate an irreversible multiphase process. Gamma-TQ released mitochondrial cytochrome c to the cytosol, induced the cleavage of poly(ADP-ribose)polymerase, and depleted intracellular glutathione. Unlike xenobiotic electrophiles, gamma-TQ is a highly cytotoxic arylating electrophile that stimulates apoptosis in several cancer cell lines including cells that express MDR through both P-glycoprotein and MRP-associated proteins. The biological properties of arylating TQ electrophiles are closely associated with cytotoxicity and may contribute to other biological effects of these highly active agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.