Offshore petroleum platforms present complex, time-sensitive situations that can make emergency evacuations difficult to manage. Virtual environments (VE) can train safety-critical tasks and help prepare personnel to respond to real-world offshore emergencies. Before industries can adopt VE training, its utility must be established to ensure the technology provides effective training. This paper presents the results of two experiments that investigated the training utility of VE training. The experiments focused particularly on determining the most appropriate method to deliver offshore emergency egress training using a virtual environment. The first experiment used lecture-based teaching (LBT). The second experiment investigated the utility of a simulation-based mastery learning (SBML) pedagogical method from the medical field to address offshore emergency egress training. Both training programs (LBT and SBML) were used to train naïve participants in basic onboard familiarization and emergency evacuation procedures. This paper discusses the training efficacy of the SBML method in this context and compares the results of the SBML experimental study to the results of the LBT training experiment. Efficacy of the training methods is measured by a combination of time spent training and performance achieved by each of the training groups. Results show that the SBML approach to VE training was more time effective and produced better performance in the emergency scenarios. SBML training can help address individual variability in competence. Limitations to the SBML training are discussed and recommendations to improve the delivery of SBML training are presented. Overall, the results indicate that employing SBML training in industry can improve human reliability during emergencies through increased competence and compliance.
The research investigates the influence of human expertise on the effectiveness of ice management operations. The key contribution is an experimental method for investigating human factor issues in an operational setting. Ice management is defined as a systematic operation that enables a marine operation to proceed safely in the presence of sea ice. In this study, the effectiveness of ice management operations was assessed in terms of ability to modify the presence of pack ice around an offshore structure. This was accomplished in a full-mission marine simulator as the venue for a systematic investigation. In the simulator, volunteer participants from a range of seafaring experience levels were tasked with individually completing ice management tasks. Recorded from 36 individuals' simulations, we compared ice management effectiveness metrics against two independent variables: (i) experience level of the participant, categorized as either cadet or seafarer and (ii) ice severity, measured in ice concentration. The results showed a significant difference in ice management effectiveness between experience categories. We examined what the seafarers did that made them more effective and characterized their operational tactics. The research provides insight into the relative importance of vessel operator skills in contributing to effective ice management, as well as how this relative importance changes as ice conditions vary from mild to severe. This may have implications for training in the nautical sciences and could help to inform good practices in ice management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.