Identification of the genes underlying complex phenotypes and the definition of the evolutionary forces that have shaped eukaryotic genomes are among the current challenges in molecular genetics. Variation in gene copy number is increasingly recognized as a source of inter-individual differences in genome sequence and has been proposed as a driving force for genome evolution and phenotypic variation. Here we show that copy number variation of the orthologous rat and human Fcgr3 genes is a determinant of susceptibility to immunologically mediated glomerulonephritis. Positional cloning identified loss of the newly described, rat-specific Fcgr3 paralogue, Fcgr3-related sequence (Fcgr3-rs), as a determinant of macrophage overactivity and glomerulonephritis in Wistar Kyoto rats. In humans, low copy number of FCGR3B, an orthologue of rat Fcgr3, was associated with glomerulonephritis in the autoimmune disease systemic lupus erythematosus. The finding that gene copy number polymorphism predisposes to immunologically mediated renal disease in two mammalian species provides direct evidence for the importance of genome plasticity in the evolution of genetically complex phenotypes, including susceptibility to common human disease.
Crescentic glomerulonephritis is an important cause of human kidney failure for which the underlying molecular basis is largely unknown. In previous studies, we mapped several susceptibility loci, Crgn1–Crgn7, for crescentic glomerulonephritis in the Wistar Kyoto (WKY) rat1. Here we show by combined congenic, linkage and microarray studies that the activator protein-1 (AP-1) transcription factor JunD is a major determinant of macrophage activity and is associated with glomerulonephritis susceptibility. Introgression of Crgn2 from the nonsusceptible Lewis strain onto the WKY background leads to significant reductions in crescent formation, macrophage infiltration, Fc receptor–mediated macrophage activation and cytokine production. Haplotype analysis restricted the Crgn2 linkage interval to a 430-kb interval containing Jund, which is markedly overexpressed in WKY macrophages and glomeruli. Jund knockdown in rat and human primary macrophages led to significantly reduced macrophage activity and cytokine secretion, indicating conservation of JunD function in macrophage activation in rats and humans and suggesting in vivo inhibition of Jund as a possible new therapeutic strategy for diseases characterized by inflammation and macrophage activation.
Macrophage migration inhibitory factor (MIF), a proinflammatory cytokine and counterregulator of glucocorticoids, is a potential therapeutic target. MIF is markedly different from other cytokines because it is constitutively expressed, stored in the cytoplasm, and present in the circulation of healthy subjects. Thus, the concept of targeting MIF for therapeutic intervention is challenging because of the need to neutralize a ubiquitous protein. In this article, we report that MIF occurs in two redox-dependent conformational isoforms. We show that one of the two isoforms of MIF, that is, oxidized MIF (oxMIF), is specifically recognized by three mAbs directed against MIF. Surprisingly, oxMIF is selectively expressed in the plasma and on the cell surface of immune cells of patients with different inflammatory diseases. In patients with acute infections or chronic inflammation, oxMIF expression correlated with inflammatory flare-ups. In addition, anti-oxMIF mAbs alleviated disease severity in mouse models of acute and chronic enterocolitis and improved, in synergy with glucocorticoids, renal function in a rat model of crescentic glomerulonephritis. We conclude that oxMIF represents the disease-related isoform of MIF; oxMIF is therefore a new diagnostic marker for inflammation and a relevant target for anti-inflammatory therapy.
Neutralization of endogenous TNF-alpha reduces glomerular inflammation, crescent formation, and tubulointerstitial scarring, with preservation of renal function, in experimental crescentic glomerulonephritis. TNF-alpha blockade is effective even when introduced at the time of maximum glomerular inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.