The large range of potential applications, not only for patients but also for healthy people, that could be achieved by affective BCI (aBCI) makes more latent the necessity of finding a commonly accepted protocol for real-time EEG-based emotion recognition. Based on wavelet package for spectral feature extraction, attending to the nature of the EEG signal, we have specified some of the main parameters needed for the implementation of robust positive and negative emotion classification. 12 seconds has resulted as the most appropriate sliding window size; from that, a set of 20 target frequencylocation variables have been proposed as the most relevant features that carry the emotional information. Lastly, QDA and KNN classifiers and population rating criterion for stimuli labeling have been suggested as the most suitable approaches for EEG-base emotion recognition. The proposed model reached a mean accuracy of 98% (s.d. 1.4) and 98.96% (s.d. 1.28) in a subject-dependent approach for QDA and KNN classifier, respectively. This new model represents a step forward towards real-time classification. Although results were not conclusive, new insights regarding subjectindependent approximation have been discussed. (J.C. Fernandez-Troyano), mval33@alumno.uned.es (Mikel Val-Calvo), jm.ferrandez@upct.es (J.M. Ferrández), e.fernandez@umh.es (Eduardo Fernandez)
In order to develop more precise and functional affective applications, it is necessary to achieve a balance between the psychology and the engineering applied to emotions. Signals from the central and peripheral nervous systems have been used for emotion recognition purposes, however, their operation and the relationship between them remains unknown. In this context, in the present work, we have tried to approach the study of the psychobiology of both systems in order to generate a computational model for the recognition of emotions in the dimension of valence. To this end, the electroencephalography (EEG) signal, electrocardiography (ECG) signal and skin temperature of 24 subjects have been studied. Each methodology has been evaluated individually, finding characteristic patterns of positive and negative emotions in each of them. After feature selection of each methodology, the results of the classification showed that, although the classification of emotions is possible at both central and peripheral levels, the multimodal approach did not improve the results obtained through the EEG alone. In addition, differences have been observed between cerebral and peripheral responses in the processing of emotions by separating the sample by sex; though, the differences between men and women were only notable at the peripheral nervous system level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.