Chikungunya virus (CHIKV) is an emerging mosquito-borne alphavirus indigenous to tropical Africa and Asia. Acute illness is characterized by fever, arthralgias, conjunctivitis, rash, and sometimes arthritis. Relatively little is known about the antigenic targets for immunity, and no licensed vaccines or therapeutics are currently available for the pathogen. While the Aedes aegypti mosquito is its primary vector, recent evidence suggests that other carriers can transmit CHIKV thus raising concerns about its spread outside of natural endemic areas to new countries including the U.S. and Europe. Considering the potential for pandemic spread, understanding the development of immunity is paramount to the development of effective counter measures against CHIKV. In this study, we isolated a new CHIKV virus from an acutely infected human patient and developed a defined viral challenge stock in mice that allowed us to study viral pathogenesis and develop a viral neutralization assay. We then constructed a synthetic DNA vaccine delivered by in vivo electroporation (EP) that expresses a component of the CHIKV envelope glycoprotein and used this model to evaluate its efficacy. Vaccination induced robust antigen-specific cellular and humoral immune responses, which individually were capable of providing protection against CHIKV challenge in mice. Furthermore, vaccine studies in rhesus macaques demonstrated induction of nAb responses, which mimicked those induced in convalescent human patient sera. These data suggest a protective role for nAb against CHIKV disease and support further study of envelope-based CHIKV DNA vaccines.
Monkeypox virus (MPXV) is an orthopoxvirus closely related to variola, the etiological agent of smallpox. In humans, MPXV causes a disease similar to smallpox and is considered to be an emerging infectious disease. Moreover, the use of MPXV for bioterroristic/biowarfare activities is of significant concern. Available small animal models of human monkeypox have been restricted to mammals with poorly defined biologies that also have limited reagent availability. We have established a murine MPXV model utilizing the STAT1-deficient C57BL/6 mouse. Here we report that a relatively low-dose intranasal (IN) infection induces 100% mortality in the stat1 ؊/؊ model by day 10 postinfection with high infectious titers in the livers, spleens, and lungs of moribund animals. Vaccination with modified vaccinia virus Ankara (MVA) followed by a booster vaccination is sufficient to protect against an intranasal MPXV challenge and induces an immune response more robust than that of a single vaccination. Furthermore, antiviral treatment with CMX001 (HDP-cidofovir) and ST-246 protects when administered as a regimen initiated on the day of infection. Thus, the stat1 ؊/؊ model provides a lethal murine platform for evaluating therapeutics and for investigating the immunological and pathological responses to MPXV infection.
Several small animal models have been developed for the study of severe acute respiratory syndrome coronavirus (SARS-CoV) replication and pathogenesis. Syrian golden hamsters are among the best small animal models, though little clinical illness and no mortality are observed after virus infection. Cyclophosphamide was used to immunosuppress hamsters leading to a prolonged disease course and higher mortality after SARS-CoV infection. In addition, there was a significant weight loss, expanded tissue tropism, and increased viral pathology in the lung, heart, kidney, and nasal turbinate tissues. Infection with recombinant SARS-CoV viruses bearing disruptions in the gene 7 coding region showed no significant change in replication kinetics, tissue tropism, morbidity, or mortality suggesting that the ORF7a (7a) and ORF7b (7b) proteins are not required for virus replication in immunosuppressed hamsters. This modified hamster model may provide a useful tool for SARS-CoV pathogenesis studies, evaluation of antiviral therapy, and analysis of additional SARS-CoV mutants.
Intranasal instillation is a widely used procedure for pneumonic delivery of drugs, vaccine candidates, or infectious agents into the respiratory tract of research mice. However, there is a paucity of published literature describing the efficiency of this delivery technique. In this report we have used the murine model of tularemia, with Francisella tularensis live vaccine strain (FTLVS) infection, to evaluate the efficiency of pneumonic delivery via intranasal dosing performed either with differing instillation volumes or different types of anesthesia. FTLVS was rendered luminescent via transformation with a reporter plasmid that constitutively expressed the Photorhabdus luminescens lux operon from a Francisella promoter. We then used an IVIS Spectrum whole animal imaging system to visualize FT dissemination at various time points following intranasal instillation. We found that instillation of FT in a dose volume of 10 µl routinely resulted in infection of the upper airways but failed to initiate infection of the pulmonary compartment. Efficient delivery of FT into the lungs via intranasal instillation required a dose volume of 50 µl or more. These studies also demonstrated that intranasal instillation was significantly more efficient for pneumonic delivery of FTLVS in mice that had been anesthetized with inhaled (isoflurane) vs. parenteral (ketamine/xylazine) anesthesia. The collective results underscore the need for researchers to consider both the dose volume and the anesthesia type when either performing pneumonic delivery via intranasal instillation, or when comparing studies that employed this technique.
Pharmacological mitigation of injuries caused by high-dose ionizing radiation is an unsolved medical problem. A specific nonlipid agonists of the type 2 GPCR for lysophosphatidic acid (LPA2) 2-[4-(1,3-Dioxo-1H,3H-benzoisoquinolin-2-yl)butylsulfamoyl]benzoic acid (DBIBB) when administered with a postirradiation delay up to 72 hours reduced mortality of C57BL/6 mice but not in LPA2 KO mice. DBIBB mitigated the gastrointestinal radiation syndrome, increased intestinal crypt survival and enterocyte proliferation, and reduced apoptosis. DBIBB enhanced DNA repair by augmenting the resolution of γ–H2AX foci, increased clonogenic survival of irradiated IEC-6 cells, attenuated the radiation-induced death of human CD34+ hematopoietic progenitors and enhanced the survival of the granulocyte/macrophage lineage. DBIBB also increased the survival of mice suffering of the hematopoietic acute radiation syndrome after total body irradiation. DBIBB represents the first drug candidate capable of mitigating acute radiation syndrome caused by high-dose γ-radiation to the hematopoietic and gastrointestinal system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.