The future of infectious disease surveillance and outbreak response is trending towards smaller hand-held solutions for point-of-need pathogen detection. Here, samples of Culex cedecei mosquitoes collected in Southern Florida, USA were tested for Venezuelan Equine Encephalitis Virus (VEEV), a previously-weaponized arthropod-borne RNA-virus capable of causing acute and fatal encephalitis in animal and human hosts. A single 20-mosquito pool tested positive for VEEV by quantitative reverse transcription polymerase chain reaction (RT-qPCR) on the Biomeme two3. The virus-positive sample was subjected to unbiased metatranscriptome sequencing on the Oxford Nanopore MinION and shown to contain Everglades Virus (EVEV), an alphavirus in the VEEV serocomplex. Our results demonstrate, for the first time, the use of unbiased sequence-based detection and subtyping of a high-consequence biothreat pathogen directly from an environmental sample using field-forward protocols. The development and validation of methods designed for field-based diagnostic metagenomics and pathogen discovery, such as those suitable for use in mobile “pocket laboratories”, will address a growing demand for public health teams to carry out their mission where it is most urgent: at the point-of-need.
12The future of infectious disease surveillance and outbreak response is trending towards smaller 13 hand-held solutions for point-of-need pathogen detection.
Many SARS-CoV-2 variants have emerged during the course of the COVID-19 pandemic. These variants have acquired mutations conferring phenotypes such as increased transmissibility or virulence, or causing diagnostic, therapeutic, or immune escape. Detection of Alpha and the majority of Omicron sublineages by PCR relied on the so-called S gene target failure due to the deletion of six nucleotides coding for amino acids 69–70 in the spike (S) protein. Detection of hallmark mutations in other variants present in samples relied on whole genome sequencing. However, whole genome sequencing as a diagnostic tool is still in its infancy due to geographic inequities in sequencing capabilities, higher cost compared to other molecular assays, longer turnaround time from sample to result, and technical challenges associated with producing complete genome sequences from samples that have low viral load and/or high background. Hence, there is a need for rapid genotyping assays. In order to rapidly generate information on the presence of a variant in a given sample, we have created a panel of four triplex RT-qPCR assays targeting 12 mutations to detect and differentiate all five variants of concern: Alpha, Beta, Gamma, Delta, and Omicron. We also developed an expanded pentaplex assay that can reliably distinguish among the major sublineages (BA.1–BA.5) of Omicron. In silico, analytical and clinical testing of the variant panel indicate that the assays exhibit high sensitivity and specificity. This panel can help fulfill the need for rapid identification of variants in samples, leading to quick decision making with respect to public health measures, as well as treatment options for individuals. Compared to sequencing, these genotyping PCR assays allow much faster turn-around time from sample to results—just a couple hours instead of days or weeks.
Polymerase chain reaction (PCR) remains the gold standard in disease diagnostics due to its extreme sensitivity and specificity. However, PCR tests are expensive and complex, require skilled personnel and specialized equipment to conduct the tests, and have long turnaround times. On the other hand, lateral flow immunoassay-based antigen tests are rapid, relatively inexpensive, and can be performed by untrained personnel at the point of care or even in the home. However, rapid antigen tests are less sensitive than PCR since they lack the inherent target amplification of PCR. It has been argued that rapid antigen tests are better indicators of infection in public health decision-making processes to test, trace, and isolate infected people to curtail further transmission. Hence, there is a critical need to increase the sensitivity of rapid antigen tests and create innovative solutions to achieve that goal. Herein, we report the development of a low-cost diagnostic platform, enabling rapid detection of SARS-CoV-2 under field or at-home conditions. This platform (Halo™) is a small, highly accurate, consumer-friendly diagnostic reader paired with fluorescently labeled lateral flow assays and custom software for collection and reporting of results. The focus of this study is to compare the analytical performance of HaloTM against comparable tests that use either colloidal gold nanoparticles or fluorescence-based reporters in simulated nasal matrix and not in clinical samples. Live virus data has demonstrated limit of detection performance of 1.9 TCID50/test in simulated nasal matrix for the delta variant, suggesting that single-assay detection of asymptomatic SARS-CoV-2 infections may be feasible. Performance of the system against all tested SARS CoV-2 virus variants showed comparable sensitivities indicating mutations in SARS-CoV-2 variants do not negatively impact the assay.
Background Accurate, high-confidence data is critical for assessing potential biothreat incidents. In a biothreat event, false negative and false positives results have serious consequences. Worst case scenarios can result in unnecessary shutdowns or fatalities at an exorbitant monetary and psychological cost, respectively. Quantitative polymerase chain reaction assays for agents of interest have been successfully used for routine biosurveillance. Recently, there has been increased impetus for adoption of amplicon sequencing (AS) for biosurveillance because it enables discrimination of true positives from near-neighbor false positives, as well as broad, simultaneous detection of many targets in many pathogens in a high-throughput scheme. However, the high sensitivity of AS can lead to false-positives. Appropriate controls and workflow reporting can help address these challenges. Objectives Data reporting standards are critical to data trustworthiness. The standards presented herein aim to provide a framework for method quality assessment in biodetection. Methods We present a set of standards, Amplicon Sequencing Minimal Information (AsqMI), developed under the auspices of the AOAC INTERNATIONAL Stakeholder Program on Agent Detection Assays for making actionable calls in biosurveillance applications. In addition to the first minimum information guidelines for AS, we provide a controls checklist and scoring scheme to assure AS run quality and assess potential sample contamination. Results Adoption of the AsqMI guidelines will improve data quality, help track workflow performance, and ultimately provide decision makers confidence to trust the results of this new and powerful technology. Conclusions AS workflows can provide robust, confident calls for biodetection; however, due diligence in reporting and controls are needed. The AsqMI guideline is the first AS minimum reporting guidance document that also provides the means for end users to evaluate their workflows to improve confidence. Highlights Standardized reporting guidance for actionable calls is critical to ensuring trustworthy data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.