The International Association of Athletics Federations recognizes the importance of nutritional practices in optimizing an Athlete's well-being and performance. Although Athletics encompasses a diverse range of track-and-field events with different performance determinants, there are common goals around nutritional support for adaptation to training, optimal performance for key events, and reducing the risk of injury and illness. Periodized guidelines can be provided for the appropriate type, amount, and timing of intake of food and fluids to promote optimal health and performance across different scenarios of training and competition. Some Athletes are at risk of relative energy deficiency in sport arising from a mismatch between energy intake and exercise energy expenditure. Competition nutrition strategies may involve pre-event, within-event, and between-event eating to address requirements for carbohydrate and fluid replacement. Although a "food first" policy should underpin an Athlete's nutrition plan, there may be occasions for the judicious use of medical supplements to address nutrient deficiencies or sports foods that help the athlete to meet nutritional goals when it is impractical to eat food. Evidence-based supplements include caffeine, bicarbonate, beta-alanine, nitrate, and creatine; however, their value is specific to the characteristics of the event. Special considerations are needed for travel, challenging environments (e.g., heat and altitude); special populations (e.g., females, young and masters athletes); and restricted dietary choice (e.g., vegetarian). Ideally, each Athlete should develop a personalized, periodized, and practical nutrition plan via collaboration with their coach and accredited sports nutrition experts, to optimize their performance.
Low energy availability (LEA), and subsequent relative energy deficiency in sport, has been observed in endurance, aesthetic, and team sport athletes, with limited data on prevalence in athletes in short-burst activities such as sprinting. We examined prevalence of signs and symptoms of LEA in elite female sprinters at the start of the training season (PRE), and at the end of a 5-month indoor training period (POST). Four of 13 female sprinters (31%) presented at PRE testing with at least one primary (amenorrhea, low bone mineral density, low follicle-stimulating hormone, luteinizing hormone, or estradiol, resting metabolic rate ≤29 kcal/kg fat-free mass, Low Energy Availability in Females Questionnaire score ≥8) and one secondary indicator of LEA (fasting blood glucose <4 mmol/L, free triiodothyronine <3.5 pmol/L, ferritin <25 μg/L, low-density lipoprotein cholesterol >3.0 mmol/L, fasting insulin <20 pmol/L, low insulin-like growth factor-1, systolic blood pressure <90 mmHg, and/or diastolic blood pressure <60 mmHg). At POST, seven out of 13 athletes (54%) presented with at least one primary and one secondary indicator of LEA, three of whom had also presented with indicators of LEA at PRE. Five out of 13 (39%) athletes had previous stress fracture history, though this was not associated with current indicators of LEA (PRE: r = .52, p = .07; POST: r = -.07, p = .82). In conclusion, elite female sprinters may present with signs and symptoms of LEA, even after off-season rest. Medical and coaching staff should be aware of the signs and symptoms of LEA and relative energy deficiency in sport and should include appropriate screening and intervention strategies when working with sprinters.
Athletes participating in the athletics (track and field) events of jumps, throws, and combined events (CEs; seven-event heptathlon and 10-event decathlon) engage in training and competition that emphasize speed and explosive movements, requiring optimal power–weight ratios. While these athletes represent a wide range of somatotypes, they share an emphasis on Type IIa and IIx muscle fiber typing. In general, athletes competing in jumps tend to have a lower body mass and may benefit from a higher protein (1.5–1.8 g PRO·kg−1·day−1) and lower carbohydrate (3–6 g CHO·kg−1·day−1) diet. Throwers tend to have a higher body mass, but with considerable differences between events. Their intense, whole-body training program suggests higher PRO requirements (1.5–2.2 g PRO·kg−1·day−1), while CHO needs (per kg) are similar to jumpers. The CE athletes must strike a balance between strength and muscle mass for throws and sprints, while maintaining a low enough body mass to maximize performance in jumps and middle-distance events. CE athletes may benefit from a higher PRO (1.5–2 g PRO·kg−1·day−1) and moderate CHO (5–8 g CHO·kg−1·day−1) diet with good energy availability to support multiple daily training sessions. Since they compete over 2 days, well-rehearsed competition-day fueling and recovery strategies are imperative for CE athletes. Depending on their events’ bioenergetic demands, athletes in throws, jumps, and CE may benefit from the periodized use of ergogenic aids, including creatine, caffeine, and/or beta-alanine. The diverse training demands, physiques, and competitive environments of jumpers, throwers, and CE athletes necessitate nutrition interventions that are periodized throughout the season and tailored to the individual needs of the athlete.
The role of nutrition in modulating training adaptation and exercise performance is well established. From a macronutrient perspective, the exercise intensity inherent to the training and competitive scenarios typically undertaken by elite athletes is largely dependent on carbohydrate (CHO) metabolism. In addition, dietary protein provides the essential building blocks to facilitate post-exercise tissue remodelling. As such, the optimal approach to periodizing daily CHO and protein intakes in order to promote training adaptation and performance remains an active area of research. Nonetheless, the research base underpinning contemporary sport nutrition guidelines has largely been conducted on male populations, some of which may not always be applicable to the female athlete. In the present paper, we therefore provide a critical review of CHO and protein requirements for female athletes whilst also highlighting areas for future research. On the basis of current evidence, we consider it premature to substantiate that female athletes require sex specific guidelines in relation to CHO or protein requirements provided energy needs are met. Rather, there is a definitive need for further research using sport-specific competition and training related exercise protocols that rigorously control for prior exercise, CHO/energy intake, contraceptive use and phase of menstrual cycle. Moreover, our overarching recommendation is to adopt an individualised approach that takes into account athlete specific training and competition goals whilst also considering personal symptoms associated with the menstrual cycle.
Elite volleyball athletes experience significant physical and psychological demands during the competitive season. The aim was to compare the dietary intake of male volleyball athletes with recommendations for sport and health, and to examine the association of physique traits and knee health on eating behaviours and of eating behaviours on reported dietary intake. Using a retrospective cross-sectional design, 22 male athletes from a national indoor volleyball program underwent anthropometric, dual-energy X-ray absorptiometry and resting metabolic rate testing, 4-day dietary intake and hematological analysis, and also completed the three-factor eating questionnaire–R18 for eating behaviours and the Victorian Institute of Sport Assessment—patellar tendon (VISA-P) questionnaire for knee health. Most players under-consumed energy compared to reference guidelines, secondary to under-consuming carbohydrate for exercise. The primary eating behaviour was cognitive restraint, which was associated with body mass index and ectomorphy. Emotional eating behaviour was associated with VISA-P. Differences in emotional and cognitive restraint eating behaviours did not impact dietary intake. The findings suggest that players are at risk of an impaired ability to adapt to and recover from training during an important segment of the competitive season. Future work should explore the presence of low energy availability in elite male volleyball players.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.