Background More than 28 000 people were infected with Ebola virus during the 2014–2015 West African outbreak, resulting in more than 11 000 deaths. Better methods are needed to reduce the risk of self-contamination while doffing personal protective equipment (PPE) to prevent pathogen transmission. Methods A set of interventions based on previously identified failure modes was designed to mitigate the risk of self- contamination during PPE doffing. These interventions were tested in a randomized controlled trial of 48 participants with no prior experience doffing enhanced PPE. Contamination was simulated using a fluorescent tracer slurry and fluorescent polystyrene latex spheres (PLSs). Self-contamination of scrubs and skin was measured using ultraviolet light visualization and swabbing followed by microscopy, respectively. Doffing sessions were videotaped and reviewed to score standardized teamwork behaviors. Results Participants in the intervention group contaminated significantly fewer body sites than those in the control group (median [interquartile range], 6 [3–8] vs 11 [6–13], P = .002). The median contamination score was lower for the intervention group than the control group when measured by ultraviolet light visualization (23.15 vs 64.45, P = .004) and PLS swabbing (72.4 vs 144.8, P = .001). The mean teamwork score was greater in the intervention group (42.2 vs 27.5, P < .001). Conclusions An intervention package addressing the PPE doffing task, tools, environment, and teamwork skills significantly reduced the amount of self-contamination by study participants. These elements can be incorporated into PPE guidance and training to reduce the risk of pathogen transmission.
Passive bioaerosol samplers can improve environmental and health protection by enhancing the practicality and cost-effectiveness of air sampling. Here, we present the outdoor field testing of a novel, passive bioaerosol sampler, the Rutgers Electrostatic Passive Sampler (REPS), based on the use of polarized, ferroelectric polymer film (poly(vinylidene fluoride)). Four 10-day-long field campaigns were conducted to compare total (culturable + non-culturable) and culturable bioaerosol collection efficiencies of REPS to passive samplers (PTFE settling filters and agar settling plates). These collection efficiencies were calculated relative to performance of an active, reference Button Sampler. Compared to passive PTFE filters, which exclusively rely on gravitational particle deposition, REPS collected a 7-fold higher total microorganism quantity. Relative to the Button Sampler, REPS collected 25% of the total number of bacteria and fungi and 65% of the culturable bacteria. Furthermore, REPS achieved this performance without any air movers, pumps, batteries or external power. Since the Button Samplers operated at 4 L/min, REPS was calibrated to have equivalent sampling rates of 2.6 L/min and 1.0 L/min for culturable bacteria and total microorganisms, respectively. These results suggest that REPS can passively collect airborne microorganisms, including culturable bacteria, with high efficiency over long-term sampling durations. REPS can provide better preservation of bacterial culturability because it has no active airflow, which desiccates microbes in active samplers. Since there are limited options available for long-term, unattended bioaerosol sampling, REPS can complement currently available bioaerosol sampling technologies for numerous environmental health applications, such as exposure assessment for epidemiology and monitoring aeroallergen trends.
Background Fluorescent tracers are often used with ultraviolet lights to visibly identify healthcare worker self-contamination after doffing of personal protective equipment (PPE). This method has drawbacks, as it cannot detect pathogen-sized contaminants nor airborne contamination in subjects’ breathing zones. Methods A contamination detection/quantification method was developed using 2-µm polystyrene latex spheres (PSLs) to investigate skin contamination (via swabbing) and potential inhalational exposure (via breathing zone air sampler). Porcine skin coupons were used to estimate the PSL swabbing recovery efficiency and limit of detection (LOD). A pilot study with 5 participants compared skin contamination levels detected via the PSL vs fluorescent tracer methods, while the air sampler quantified potential inhalational exposure to PSLs during doffing. Results Average PSL skin swab recovery efficiency was 40% ± 29% (LOD = 1 PSL/4 cm2 of skin). In the pilot study, all subjects had PSL and fluorescent tracer skin contamination. Two subjects had simultaneously located contamination of both types on a wrist and hand. However, for all other subjects, the PSL method enabled detection of skin contamination that was not detectable by the fluorescent tracer method. Hands/wrists were more commonly contaminated than areas of the head/face (57% vs 23% of swabs with PSL detection, respectively). One subject had PSLs detected by the breathing zone air sampler. Conclusions This study provides a well-characterized method that can be used to quantitate levels of skin and inhalational contact with simulant pathogen particles. The PSL method serves as a complement to the fluorescent tracer method to study PPE doffing self-contamination.
Investigations of young workers, including limited surveys in supervised school settings, suggested their elevated injury risk. This study identified factors contributing to cuts-lacerations among adolescents in New Jersey secondary school career, technical, and vocational education programs. Of 1,772 injuries reported between December 1, 1998, and September 1, 2010, 777 (44%) were cuts-lacerations; analyses focused on 224 reports (n = 182 post-exclusions) submitted after fall 2005 in three career groups-Food, Hospitality & Tourism (FH&T) (n = 71), Manufacturing & Construction (M&C) (n = 84), and Automotive & Transportation (A&T) (n = 27). Most students were "struck by" tools or hard surfaces (n = 93, 51%); 63 cuts were from knives in FH&T. In M&C, most cuts-lacerations were caused by hand-held tools (n = 18) and being "struck against/by" or "caught between hard surfaces" (n = 19). Males reported more cuts-lacerations (n = 145), most commonly among 11th graders (n = 54) and ages 16 to 17 years (n = 79). Fingers (n = 117) were most often injured, usually by cutting tools (n = 83). Training, supervision, and appropriate equipment, and further assessments of "struck by" and "pinch point" hazards, are needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.