Complex living agents consist of cells, which are themselves competent sub-agents navigating physiological and metabolic spaces. Behaviour science, evolutionary developmental biology and the field of machine intelligence all seek to understand the scaling of biological cognition: what enables individual cells to integrate their activities to result in the emergence of a novel, higher-level intelligence with large-scale goals and competencies that belong to it and not to its parts? Here, we report the results of simulations based on the TAME framework, which proposes that evolution pivoted the collective intelligence of cells during morphogenesis of the body into traditional behavioural intelligence by scaling up homeostatic competencies of cells in metabolic space. In this article, we created a minimal in silico system (two-dimensional neural cellular automata) and tested the hypothesis that evolutionary dynamics are sufficient for low-level setpoints of metabolic homeostasis in individual cells to scale up to tissue-level emergent behaviour. Our system showed the evolution of the much more complex setpoints of cell collectives (tissues) that solve a problem in morphospace: the organization of a body-wide positional information axis (the classic French flag problem in developmental biology). We found that these emergent morphogenetic agents exhibit a number of predicted features, including the use of stress propagation dynamics to achieve the target morphology as well as the ability to recover from perturbation (robustness) and long-term stability (even though neither of these was directly selected for). Moreover, we observed an unexpected behaviour of sudden remodelling long after the system stabilizes. We tested this prediction in a biological system—regenerating planaria—and observed a very similar phenomenon. We propose that this system is a first step towards a quantitative understanding of how evolution scales minimal goal-directed behaviour (homeostatic loops) into higher-level problem-solving agents in morphogenetic and other spaces.
Regeneration requires the production of large numbers of new cells, and thus cell division regulators, particularly ERK signaling, are critical in regulating this process. In the highly regenerative planarian flatworm, questions remain as to whether ERK signaling controls overall regeneration or plays a head-specific role. Here we show that ERK inhibition in the 3 days following amputation delays regeneration, but that all tissues except the head can overcome this inhibition, resulting in headless regenerates. This prevention of head regeneration happens to a different degree along the anterior-posterior axis, with very anterior wounds regenerating heads even under ERK inhibition. Remarkably, 4 to 18 weeks after injury, the headless animals induced by ERK inhibition remodel to regain single-headed morphology, in the absence of further injury, in a process driven by Wnt/β-catenin signaling. Interestingly, headless animals are likely to exhibit unstable axial polarity, and cutting or fissioning prior to remodeling can result in body-wide reversal of anterior-posterior polarity. Our data reveal new aspects of how ERK signaling regulates regeneration in planaria and show anatomical remodeling on very long timescales.
All cognitive agents are composite beings. Specifically, complex living agents consist of cells, which are themselves competent sub-agents navigating physiological and metabolic spaces. Behavior science, evolutionary developmental biology, and the field of machine intelligence all seek an answer to the scaling of biological cognition: what evolutionary dynamics enable individual cells to integrate their activities to result in the emergence of a novel, higher-level intelligence that has goals and competencies that belong to it and not to its parts? Here, we report the results of simulations based on the TAME framework, which proposes that evolution pivoted the collective intelligence of cells during morphogenesis of the body into traditional behavioral intelligence by scaling up the goal states at the center of homeostatic processes. We tested the hypothesis that a minimal evolutionary framework is sufficient for small, low-level setpoints of metabolic homeostasis in cells to scale up into collectives (tissues) which solve a problem in morphospace: the organization of a body-wide positional information axis (the classic French Flag problem). We found that these emergent morphogenetic agents exhibit a number of predicted features, including the use of stress propagation dynamics to achieve its target morphology as well as the ability to recover from perturbation (robustness) and long-term stability (even though neither of these was directly selected for). Moreover, we observed unexpected behavior of sudden remodeling long after the system stabilizes. We tested this prediction in a biological system -regenerating planaria -and observed a very similar phenomenon. We propose that this system is a first step toward a quantitative understanding of how evolution scales minimal goal-directed behavior (homeostatic loops) into higher-level problem-solving agents in morphogenetic and other spaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.