Summary1. In coastal and estuarine systems, foundation species like seagrasses, mangroves, saltmarshes or corals provide important ecosystem services. Seagrasses are globally declining and their reintroduction has been shown to restore ecosystem functions. However, seagrass restoration is often challenging, given the dynamic and stressful environment that seagrasses often grow in. 2. From our world-wide meta-analysis of seagrass restoration trials (1786 trials), we describe general features and best practice for seagrass restoration. We confirm that removal of threats is important prior to replanting. Reduced water quality (mainly eutrophication), and construction activities led to poorer restoration success than, for instance, dredging, local direct impact and natural causes. Proximity to and recovery of donor beds were positively corre- The meta-analysis shows that both trial survival and seagrass population growth rate in trials that survived are positively affected by the number of plants or seeds initially transplanted. This relationship between restoration scale and restoration success was not related to trial characteristics of the initial restoration. The majority of the seagrass restoration trials have been very small, which may explain the low overall trial survival rate (i.e. estimated 37%). 4. Successful regrowth of the foundation seagrass species appears to require crossing a minimum threshold of reintroduced individuals. Our study provides the first global field evidence for the requirement of a critical mass for recovery, which may also hold for other foundation species showing strong positive feedback to a dynamic environment. 5. Synthesis and applications. For effective restoration of seagrass foundation species in its typically dynamic, stressful environment, introduction of large numbers is seen to be beneficial and probably serves two purposes. First, a large-scale planting increases trial survival -large numbers ensure the spread of risks, which is needed to overcome high natural variability. Secondly, a large-scale trial increases population growth rate by enhancing selfsustaining feedback, which is generally found in foundation species in stressful environments such as seagrass beds. Thus, by careful site selection and applying appropriate techniques, spreading of risks and enhancing self-sustaining feedback in concert increase success of seagrass restoration.
Global seagrass losses parallel significant declines observed in corals and mangroves over the past 50 years. These combined declines have resulted in accelerated global losses to ecosystem services in coastal waters. Seagrass meadows can be extensive (hundreds of square kilometers) and longlived (thousands of years), with the meadows persisting predominantly through vegetative (clonal) growth. They also invest a large amount of energy in sexual reproduction. In this article, we explore the role that sexual reproduction, pollen, and seed dispersal play in maintaining species distributions, genetic diversity, and connectivity among seagrass populations. We also address the relationship between long-distance dispersal, genetic connectivity, and the maintenance of genetic diversity that may enhance resilience to stresses associated with seagrass loss. Our reevaluation of seagrass dispersal and recruitment has altered our perception of the importance of long-distance dispersal and has revealed extensive dispersal at scales much larger than was previously thought possible.
A movement ecology framework is applied to enhance our understanding of the causes, mechanisms and consequences of movement in seagrasses: marine, clonal, flowering plants. Four life-history stages of seagrasses can move: pollen, sexual propagules, vegetative fragments and the spread of individuals through clonal growth. Movement occurs on the water surface, in the water column, on or in the sediment, via animal vectors and through spreading clones. A capacity for long-distance dispersal and demographic connectivity over multiple timeframes is the novel feature of the movement ecology of seagrasses with significant evolutionary and ecological consequences. The space–time movement footprint of different life-history stages varies. For example, the distance moved by reproductive propagules and vegetative expansion via clonal growth is similar, but the timescales range exponentially, from hours to months or centuries to millennia, respectively. Consequently, environmental factors and key traits that interact to influence movement also operate on vastly different spatial and temporal scales. Six key future research areas have been identified.
Heat and freshwater transports through Fram Strait are understood to have a significant influence on the hydrographic conditions in the Arctic Ocean and on water mass modifications in the Nordic seas. To determine these transports and their variability reliable estimates of the volume transport through the strait are required. Current meter moorings were deployed in Fram Strait from September 1997 to September 1999 in the framework of the EU MAST III Variability of Exchanges in the Northern Seas programme. The monthly mean velocity fields reveal marked velocity variations over seasonal and annual time scales, and the spatial structure of the northward flowing West Spitsbergen Current and the southward East Greenland Current with a maximum in spring and a minimum in summer. The volume transport obtained by averaging the monthly means over two years amounts to 9.5 ± 1.4 Sv to the north and 11.1 ± 1.7 Sv to the south (1 Sv = 10 6 m 3 s -1 ). The West Spitsbergen Current has a strong barotropic and a weaker baroclinic component; in the East Greenland Current barotropic and baroclinic components are of similar magnitude. The net transport through the strait is 4.2 ± 2.3 Sv to the south. The obtained northward and southward transports are significantly larger than earlier estimates in the literature; however, within its range of uncertainty the balance obtained from a two year average is consistent with earlier estimates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.