Pmp3p-related proteins are highly conserved proteins that exist in bacteria, yeast, nematodes and plants, and its transcript is regulated in response to abiotic stresses, such as low temperature or high salinity. Pmp3p was originally identified in Saccharomyces cerevisiae, and it belongs to the sensitive to Na + (SNA)-protein family, which comprises four members -Pmp3p/Sna1p, Sna2p, Sna3p and Sna4p. Deletion of the PMP3 gene conferred sensitivity to cytotoxic cations, whereas removal of the other SNA genes did not lead to clear phenotypic effects. It has long been believed that Pmp3p-related proteins have a common and important role in the modulation of plasma membrane potential and in the regulation of intracellular ion homeostasis. Here, we show that several growth phenotypes linked to PMP3 deletion can be modulated by the removal of specific genes involved in sphingolipid synthesis. These genetic interactions, together with lipid binding assays and epifluorescence microscopy, as well as other biochemical experiments, suggest that Pmp3p could be part of a phosphoinositide-regulated stress sensor.
Endocytosis of membrane proteins in yeast requires α-arrestin-mediated ubiquitylation by the ubiquitin ligase Rsp5. Yet, the diversity of α-arrestin targets studied is restricted to a small subset of plasma membrane (PM) proteins. Here, we performed quantitative proteomics to identify new targets of 12 α-arrestins and gained insight into the diversity of pathways affected by α-arrestins, including the cell wall integrity pathway and PM–endoplasmic reticulum contact sites. We found that Art2 is the main regulator of substrate- and stress-induced ubiquitylation and endocytosis of the thiamine (vitamin B1) transporters: Thi7, nicotinamide riboside transporter 1 (Nrt1), and Thi72. Genetic screening allowed for the isolation of transport-defective Thi7 mutants, which impaired thiamine-induced endocytosis. Coexpression of inactive mutants with wild-type Thi7 revealed that both transporter conformation and transport activity are important to induce endocytosis. Finally, we provide evidence that Art2 mediated Thi7 endocytosis is regulated by the target of rapamycin complex 1 (TORC1) and requires the Sit4 phosphatase but is not inhibited by the Npr1 kinase.
Post-COVID syndrome remains poorly studied in children and adolescents. Here, we aimed to investigate the prevalence and risk factors of pediatric post-COVID in a population-based sample, stratifying by serological status. Children from the SEROCoV-KIDS cohort study (State of Geneva, Switzerland), aged 6 months to 17 years, were tested for anti-SARS-CoV-2 N antibodies (December 2021-February 2022) and parents filled in a questionnaire on persistent symptoms in their children (lasting over 12 weeks) compatible with post-COVID. Of 1034 children tested, 570 (55.1%) were seropositive. The sex- and age-adjusted prevalence of persistent symptoms among seropositive children was 9.1% (95%CI: 6.7;11.8) and 5.0% (95%CI: 3.0;7.1) among seronegatives, with an adjusted prevalence difference (ΔaPrev) of 4.1% (95%CI: 1.1;7.3). Stratifying per age group, only adolescents displayed a substantial risk of having post-COVID symptoms (ΔaPrev = 8.3%, 95%CI: 3.5;13.5). Identified risk factors for post-COVID syndrome were older age, having a lower socioeconomic status and suffering from chronic health conditions, especially asthma. Our findings show that a significant proportion of seropositive children, particularly adolescents, experienced persistent COVID symptoms. While there is a need for further investigations, growing evidence of pediatric post-COVID urges early screening and primary care management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.