Remyelination is a critical repair process that is initiated after a demyelinating insult. The failure to remyelinate contributes to neurological diseases such as multiple sclerosis. Here, we test the hypothesis that proteinase activity is required for the extensive remodeling of the extracellular matrix that occurs during remyelination. We show that mice lacking matrix metalloproteinase (MMP)-9 are impaired in myelin reformation after lysolecithin-induced demyelination. This deficiency may be explained at least in part by the failure to clear the accumulation of NG2, an inhibitory proteoglycan that retards the maturation and differentiation of oligodendrocytes that are needed for remyelination. These results emphasize for the first time that upregulation of MMP activity can be important for facilitating regeneration from some types of CNS injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.