Atomoxetine (Strattera, a potent and selective inhibitor of the presynaptic norepinephrine transporter, is used clinically for the treatment of attention-deficit hyperactivity disorder (ADHD) in children, adolescents and adults. Atomoxetine has high aqueous solubility and biological membrane permeability that facilitates its rapid and complete absorption after oral administration. Absolute oral bioavailability ranges from 63 to 94%, which is governed by the extent of its first-pass metabolism. Three oxidative metabolic pathways are involved in the systemic clearance of atomoxetine: aromatic ring-hydroxylation, benzylic hydroxylation and N-demethylation. Aromatic ring-hydroxylation results in the formation of the primary oxidative metabolite of atomoxetine, 4-hydroxyatomoxetine, which is subsequently glucuronidated and excreted in urine. The formation of 4-hydroxyatomoxetine is primarily mediated by the polymorphically expressed enzyme cytochrome P450 (CYP) 2D6. This results in two distinct populations of individuals: those exhibiting active metabolic capabilities (CYP2D6 extensive metabolisers) and those exhibiting poor metabolic capabilities (CYP2D6 poor metabolisers) for atomoxetine. The oral bioavailability and clearance of atomoxetine are influenced by the activity of CYP2D6; nonetheless, plasma pharmacokinetic parameters are predictable in extensive and poor metaboliser patients. After single oral dose, atomoxetine reaches maximum plasma concentration within about 1-2 hours of administration. In extensive metabolisers, atomoxetine has a plasma half-life of 5.2 hours, while in poor metabolisers, atomoxetine has a plasma half-life of 21.6 hours. The systemic plasma clearance of atomoxetine is 0.35 and 0.03 L/h/kg in extensive and poor metabolisers, respectively. Correspondingly, the average steady-state plasma concentrations are approximately 10-fold higher in poor metabolisers compared with extensive metabolisers. Upon multiple dosing there is plasma accumulation of atomoxetine in poor metabolisers, but very little accumulation in extensive metabolisers. The volume of distribution is 0.85 L/kg, indicating that atomoxetine is distributed in total body water in both extensive and poor metabolisers. Atomoxetine is highly bound to plasma albumin (approximately 99% bound in plasma). Although steady-state concentrations of atomoxetine in poor metabolisers are higher than those in extensive metabolisers following administration of the same mg/kg/day dosage, the frequency and severity of adverse events are similar regardless of CYP2D6 phenotype.Atomoxetine administration does not inhibit or induce the clearance of other drugs metabolised by CYP enzymes. In extensive metabolisers, potent and selective CYP2D6 inhibitors reduce atomoxetine clearance; however, administration of CYP inhibitors to poor metabolisers has no effect on the steady-state plasma concentrations of atomoxetine.
ABSTRACT:The role of the polymorphic cytochrome P450 2D6 (CYP2D6) in the pharmacokinetics of atomoxetine hydrochloride [(؊)-N-methyl-␥-(2-methylphenoxy)benzenepropanamine hydrochloride; LY139603] has been documented following both single and multiple doses of the drug. In this study, the influence of the CYP2D6 polymorphism on the overall disposition and metabolism of a 20-mg dose of 14 C-atomoxetine was evaluated in CYP2D6 extensive metabolizer (EM; n ؍ 4) and poor metabolizer (PM; n ؍ 3) subjects under steady-state conditions. Atomoxetine was well absorbed from the gastrointestinal tract and cleared primarily by metabolism with the preponderance of radioactivity being excreted into the urine. In EM subjects, the majority of the radioactive dose was excreted within 24 h, whereas in PM subjects the majority of the dose was excreted by 72 h. The biotransformation of atomoxetine was similar in all subjects undergoing aromatic ring hydroxylation, benzylic oxidation, and N-demethylation with no CYP2D6 phenotype-specific metabolites. The primary oxidative metabolite of atomoxetine was 4-hydroxyatomoxetine, which was subsequently conjugated forming 4-hydroxyatomoxetine-O-glucuronide. Due to the absence of CYP2D6 activity, the systemic exposure to radioactivity was prolonged in PM subjects (t 1/2 ؍ 62 h) compared with EM subjects (t 1/2 ؍ 18 h). In EM subjects, atomoxetine (t 1/2 ؍ 5 h) and 4-hydroxyatomoxetine-O-glucuronide (t 1/2 ؍ 7 h) were the principle circulating species, whereas atomoxetine (t 1/2 ؍ 20 h) and Ndesmethylatomoxetine (t 1/2 ؍ 33 h) were the principle circulating species in PM subjects. Although differences were observed in the excretion and relative amounts of metabolites formed, the primary difference observed between EM and PM subjects was the rate at which atomoxetine was biotransformed to 4-hydroxyatomoxetine.Atomoxetine hydrochloride (LY139603; formerly known as tomoxetine hydrochloride) is known chemically as (Ϫ)-N-methyl-␥-(2-methylphenoxy)benzenepropanamine hydrochloride. Atomoxetine is a potent inhibitor of the presynaptic norepinephrine transporter with minimal affinity for other monoamine transporters or receptors (Wong et al., 1982;Gehlert et al., 1993). Atomoxetine is under development as a therapeutic agent for the treatment of attention deficit/hyperactivity disorder in children, adolescents, and adults.Atomoxetine is predominantly metabolized by CYP2D6 (Ring et al., 2002); therefore, its single and multiple dose pharmacokinetics are influenced by the polymorphic expression of this enzyme (Farid et al., 1985). As a result, the pharmacokinetics of atomoxetine appear to have a bimodal distribution with two distinct populations. The enzymatic activity of CYP2D6 is determined by a genetic polymorphism (Evans et al., 1980;Steiner et al., 1988), and is an important source of intersubject variability in metabolism for a number of drugs, including debrisoquine, desipramine, and dextromethorphan (Wolf and Smith, 1999). Mutations or deletion of the CYP2D6 gene results in a mino...
The pharmacokinetics of atomoxetine in extensive metabolizer patients were well characterized over a wide range of doses in this study. Atomoxetine pharmacokinetics in pediatric patients and adult subjects were similar after adjustment for body weight.
These findings extend to children the positive results previously reported in adults diagnosed with ADHD who were treated with atomoxetine. These results support additional controlled trials of atomoxetine in cases of pediatric ADHD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.