Peptoids are versatile peptidomimetic molecules with wide‐ranging applications from drug discovery to materials science. An understanding of peptoid sequence features that contribute to both their three‐dimensional structures and their interactions with lipids will expand functions of peptoids in varied fields. Furthermore, these topics capture the enthusiasm of undergraduate students who prepare and study diverse peptoids in laboratory coursework and/or in faculty led research. Here, we present the synthesis and study of 21 peptoids with varied functionality, including 19 tripeptoids and 2 longer oligomers. We observed differences in fluorescence spectral features for 10 of the tripeptoids that correlated with peptoid flexibility and relative positioning of chromophores. Interactions of representative peptoids with sonicated glycerophospholipid vesicles were also evaluated using fluorescence spectroscopy. We observed evidence of conformational changes effected by lipids for select peptoids. We also summarize our experiences engaging students in peptoid‐based projects to advance both research and undergraduate educational objectives in parallel.
The first report of a water-soluble peptoid adsorbed to silica monitored by second harmonic generation (SHG) at the liquid/solid interface is presented here. The molecular insights gained from these studies will inform the design and preparation of novel peptoid coatings. Simple 6- and 15-residue peptoids were dissolved in phosphate buffered saline and adsorbed to bare silica surfaces. Equilibrium binding constants and relative surface concentrations of adsorbed peptoids were determined from fits to the Langmuir model. Complementary fluorescence spectroscopy studies were used to quantify the maximum surface excess. Binding constants, determined here by SHG, were comparable to those previously reported for cationic proteins and small molecules. Enthalpies and free energies of adsorption were determined to elucidate thermodynamic driving forces. Circular dichroism spectra confirm that minimal conformational changes occur when peptoids are adsorbed to silica while pH studies indicate that electrostatic interactions impact adsorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.