SignificanceAmbrosia beetles are among the true fungus-farming insects and cultivate fungal gardens on which the larvae and adults feed. After invading new habitats, some species destructively attack living or weakened trees growing in managed and unmanaged settings. Ambrosia beetles adapted to weakened trees tunnel into stem tissues containing ethanol to farm their symbiotic fungi, even though ethanol is a potent antimicrobial agent that inhibits the growth of various fungi, yeasts, and bacteria. Here we demonstrate that ambrosia beetles rely on ethanol for host tree colonization because it promotes the growth of their fungal gardens while inhibiting the growth of “weedy” fungal competitors. We propose that ambrosia beetles use ethanol to optimize their food production.
Diet, dietary selection, and nutritional composition of the foods of sage grouse (Centrocercus urophasianus) hens were determined during the pre-laying period in southeastern Oregon in 1990 and 1991. We collected 42 female sage grouse during a 5-week period preceding incubation (4 March-8 April). Sagebrush (Artemisia spp.) was the most common among 21 foods consumed but forbs composed 18 to 50% of the diet by weight. Desert-parsley (Lomatium spp.), hawksbeard (Crepis spp.), long-leaf phlox (Phlox longifolia Nutt.), everlasting (Antennaria spp.), mountain-dandelion (Agoserir spp.), clover (Trifoliwnspp.), Pursh's milk-vetch (Astragalus purshii Dougl.), buckwheat (Eriogonum spp.), and obscure milkvetch (A. obscurus) were the primary (11% of the diet by weight) forbs consumed. Forbs were used selectively over sagebrush in both low and big sagebrush cover types. All forbs were higher in crude protein and phosphorus and many were higher in calcium than sagebrush. Consumption of forbs increased nutrient content of the composite diet. Substantially fewer forbs were present in the diet in 1991 than in 1990, which coincided with reduced sage grouse productivity on the study area. These results suggest that consumption of forbs during the pre-laying period may effect reproductive success by improving nutritional status of hens.
Strategic conservation efforts for cryptic species, especially bats, are hindered by limited understanding of distribution and population trends. Integrating long‐term encounter surveys with multi‐season occupancy models provides a solution whereby inferences about changing occupancy probabilities and latent changes in abundance can be supported. When harnessed to a Bayesian inferential paradigm, this modeling framework offers flexibility for conservation programs that need to update prior model‐based understanding about at‐risk species with new data. This scenario is exemplified by a bat monitoring program in the Pacific Northwestern United States in which results from 8 years of surveys from 2003 to 2010 require updating with new data from 2016 to 2018. The new data were collected after the arrival of bat white‐nose syndrome and expansion of wind power generation, stressors expected to cause population declines in at least two vulnerable species, little brown bat (Myotis lucifugus) and the hoary bat (Lasiurus cinereus). We used multi‐season occupancy models with empirically informed prior distributions drawn from previous occupancy results (2003–2010) to assess evidence of contemporary decline in these two species. Empirically informed priors provided the bridge across the two monitoring periods and increased precision of parameter posterior distributions, but did not alter inferences relative to use of vague priors. We found evidence of region‐wide summertime decline for the hoary bat (trueλ^ = 0.86 ± 0.10) since 2010, but no evidence of decline for the little brown bat (trueλ^ = 1.1 ± 0.10). White‐nose syndrome was documented in the region in 2016 and may not yet have caused regional impact to the little brown bat. However, our discovery of hoary bat decline is consistent with the hypothesis that the longer duration and greater geographic extent of the wind energy stressor (collision and barotrauma) have impacted the species. These hypotheses can be evaluated and updated over time within our framework of pre–post impact monitoring and modeling. Our approach provides the foundation for a strategic evidence‐based conservation system and contributes to a growing preponderance of evidence from multiple lines of inquiry that bat species are declining.
Greater sage-grouse (Centrocercus urophasianus) habitat management involves vegetation manipulations to increase or decrease specific habitat components. For sage-grouse habitat management to be most effective, an understanding of the functional response of sage-grouse to changes in resource availability is critical. We investigated temporal variation in diet composition and nutrient content (crude protein, calcium, and phosphorus) of foods consumed by preincubating female sagegrouse relative to food supply and age of hen. We collected 86 preincubating female greater sage-grouse at foraging areas during early (18-31 March) and late (1-12 April) preincubation periods during 2002-2003. Females consumed 22 food types including low sagebrush (Artemisia arbuscula Nutt.), big sagebrush (Artemisia tridentata Nutt.), 15 forb species, 2 insect taxa, sagebrush galls, moss, and a trace amount of unidentified grasses. Low sagebrush was the most common food item, but forbs were found in 89% of the crops and composed 30.1% aggregate dry mass (ADM) of the diet. ADM and species composition of female diets were highly variable between collection periods and years, and coincided with temporal variation in forb availability. Adult females consumed more forbs and less low sagebrush compared to yearling females. Because of higher levels of crude protein, calcium, and phosphorus, forbs were important diet components in comparison with low sagebrush, which had the lowest nutrient content of all foods consumed. Our results indicate that increased forb abundance in areas used by female sage-grouse prior to nesting would increase their forb consumption and nutritional status for reproduction. We recommend that managers should emphasize delineation of habitats used by preincubating sage-grouse and evaluate the need for enhancing forb abundance and diversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.