The interface between antibody and antigen is often depicted as a lock and key, suggesting that an antibody surface can accommodate only one antigen. Here, we describe an antibody with an antigen binding site that binds two distinct proteins with high affinity. We isolated a variant of Herceptin, a therapeutic monoclonal antibody that binds the human epidermal growth factor receptor 2 (HER2), on the basis of its ability to simultaneously interact with vascular endothelial growth factor (VEGF). Crystallographic and mutagenesis studies revealed that distinct amino acids of this antibody, called bH1, engage HER2 and VEGF energetically, but there is extensive overlap between the antibody surface areas contacting the two antigens. An affinity-improved version of bH1 inhibits both HER2- and VEGF-mediated cell proliferation in vitro and tumor progression in mouse models. Such "two-in-one" antibodies challenge the monoclonal antibody paradigm of one binding site, one antigen. They could also provide new opportunities for antibody-based therapy.
Extensive crosstalk among ErbB/HER receptors suggests that blocking signaling from more than one family member may be essential to effectively treat cancer and limit drug resistance. We generated a conventional IgG molecule MEHD7945A with dual HER3/EGFR specificity by phage display engineering and used structural and mutational studies to understand how a single antigen recognition surface binds two epitopes with high affinity. As a human IgG1, MEHD7945A exhibited dual action by inhibiting EGFR- and HER3-mediated signaling in vitro and in vivo and the ability to engage immune effector functions. Compared with monospecific anti-HER antibodies, MEHD7945A was more broadly efficacious in multiple tumor models, showing that combined inhibition of EGFR and HER3 with a single antibody is beneficial.
The antigen-binding site of Herceptin, an anti-human Epidermal Growth Factor Receptor 2 (HER2) antibody, was engineered to add a second specificity toward Vascular Endothelial Growth Factor (VEGF) to create a high affinity two-in-one antibody bH1. Crystal structures of bH1 in complex with either antigen showed that, in comparison to Herceptin, this antibody exhibited greater conformational variability, also called “structural plasticity”. Here, we analyzed the biophysical and thermodynamic properties of the dual specific variants of Herceptin to understand how a single antibody binds two unrelated protein antigens. We showed that while bH1 and the affinity-improved bH1-44, in particular, maintained many properties of Herceptin including binding affinity, kinetics and the use of residues for antigen recognition, they differed in the binding thermodynamics. The interactions of bH1 and its variants with both antigens were characterized by large favorable entropy changes whereas the Herceptin/HER2 interaction involved a large favorable enthalpy change. By dissecting the total entropy change and the energy barrier for dual interaction, we determined that the significant structural plasticity of the bH1 antibodies demanded by the dual specificity did not translate into the expected increase of entropic penalty relative to Herceptin. Clearly, dual antigen recognition of the Herceptin variants involves divergent antibody conformations of nearly equivalent energetic states. Hence, increasing the structural plasticity of an antigen-binding site without increasing the entropic cost may play a role for antibodies to evolve multi-specificity. Our report represents the first comprehensive biophysical analysis of a high affinity dual specific antibody binding two unrelated protein antigens, furthering our understanding of the thermodynamics that drive the vast antigen recognition capacity of the antibody repertoire.
Affinity maturation is an important part of the therapeutic antibody development process as in vivo activity often requires high binding affinity. Here, we describe a targeted approach for affinity improvement of therapeutic antibodies. Sets of CDR residues that are solvent accessible and relatively diverse in natural antibodies are targeted for diversification. Degenerate oligonucleotides are used to generate combinatorial phage-displayed antibody libraries with varying degree of diversity at randomized positions from which high-affinity antibodies can be selected. An advantage of using antibodies for therapy is their exquisite target specificity, which enables selective antigen binding and reduces off-target effects. However, it can be useful, and often it is necessary, to generate cross-reactive antibodies binding to not only the human antigen but also the corresponding non-human primate or rodent orthologs. Such cross-reactive antibodies can be used to validate the therapeutic targeting and examine the safety profile in preclinical animal models before committing to a costly development track. We show how affinity improvement and cross-species binding can be achieved in a one-step process.
Diversity-the variability carried by the amino acid sequences of a synthetic antibody library-can be generated by synthetic degenerate oligonucleotides. One can experiment with different diversity designs in the variable domains of light and heavy chains (V(H) and V(L)) to generate antibody libraries with different properties. The ability to precisely define the final diversity of a library facilitates the process of isolating, characterizing, and optimizing an antibody lead. Here we describe detailed protocols for the design and construction of phage-displayed synthetic antibody libraries in which diversity is generated in the complementarity determining regions (CDRs) of the V(H) of a single humanized bivalent Fab scaffold. The example used in the protocol provides a general methodology for generation of libraries with engineered CDR diversity that can be applied to a template antibody sequence of choice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.