The interest in the synthesis of Se-containing compounds is growing with the discovery of derivatives exhibiting various biological activities. In this manuscript, we have identified a series of 2,2'-diselenobisbenzamides (DISeBAs) as novel HIV retroviral nucleocapsid protein 7 (NCp7) inhibitors. Because of its pleiotropic functions in the whole viral life cycle and its mutation intolerant nature, NCp7 represents a target of great interest which is not reached by any anti-HIV agent in clinical use. Using the diselenobisbenzoic scaffold, amino acid, and benzenesulfonamide derivatives were prepared and biologically profiled against different models of HIV infection. The incorporation of amino acids such as glycine and glutamate into DISeBAs 7 and 8 resulted in selective anti-HIV activity against both acutely and chronically infected cells as well as an interesting virucidal effect. DISeBAs demonstrated broad antiretroviral activity, encompassing HIV-1 drug-resistant strains including clinical isolates, as well as simian immunodeficiency virus (SIV). Time of addition experiments, along with the observed dose dependent inhibition of the Gag precursor proper processing, confirmed that their mechanism of action is based on NCp7 inhibition.
Hetero-bifunctional PROteolysis TArgeting Chimeras (PROTACs) represent a new emerging class of small molecules designed to induce polyubiquitylation and proteasomal-dependent degradation of a target protein. Despite the increasing number of publications about the synthesis, biological evaluation, and mechanism of action of PROTACs, the characterization of the pharmacokinetic properties of this class of compounds is still minimal. Here, we report a study on the metabolism of a series of 40 PROTACs in cryopreserved human hepatocytes at multiple time points. Our results indicated that the metabolism of PROTACs could not be predicted from that of their constituent ligands. Their linkers’ chemical nature and length resulted in playing a major role in the PROTACs’ liability. A subset of compounds was also tested for metabolism by human cytochrome P450 3A4 (CYP3A4) and human aldehyde oxidase (hAOX) for more in-depth data interpretation, and both enzymes resulted in active PROTAC metabolism.
In continuing our efforts to identify small molecules able to disrupt the interaction of the polymerase acidic protein-basic protein 1 (PA-PB1) subunits of influenza virus (Flu) RNA-dependent RNA polymerase, this paper is devoted to the optimization of a dihydrotriazolopyrimidine derivative, previously identified through structure-based drug discovery. The structure modifications performed around the bicyclic core led to the identification of compounds endowed with both the ability to disrupt PA-PB1 subunits interaction and anti-Flu activity with no cytotoxicity. Very interesting results were obtained with the hybrid molecules 36 and 37, designed by merging some peculiar structural features known to impart PA-PB1 interaction inhibition, with compound 36 that emerged as the most potent PA-PB1 interaction inhibitor (IC50 = 1.1 μM) among all the small molecules reported so far. Calculations showed a very favored H-bonding between the 2-amidic carbonyl of 36 and Q408, which seems to justify its potent ability to interfere with the interaction of the polymerase subunits.
The limited therapeutic options against the influenza virus (flu) and increasing challenges in drug resistance make the search for next-generation agents imperative. In this context, heterotrimeric viral PA/PB1/PB2 RNA-dependent RNA polymerase is an attractive target for a challenging but strategic protein-protein interaction (PPI) inhibition approach. Since 2012, the inhibition of the polymerase PA-PB1 subunit interface has become an active field of research following the publication of PA-PB1 crystal structures. In this Perspective, we briefly discuss the validity of flu polymerase as a drug target and its inhibition through a PPI inhibition strategy, including a comprehensive analysis of available PA-PB1 structures. An overview of all of the reported PA-PB1 complex formation inhibitors is provided, and approaches used for identification of the inhibitors, the hit-to-lead studies, and the emerged structure-activity relationship are described. In addition to highlighting the strengths and weaknesses of all of the PA-PB1 heterodimerization inhibitors, we analyze their hypothesized binding modes and alignment with a pharmacophore model that we have developed.
Indomethacin (INM), a well-known non-steroidal anti-inflammatory drug, has recently gained attention for its antiviral activity demonstrated in drug repurposing studies against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Although the mechanism of action of INM is not yet fully understood, recent studies have indicated that it acts at an early stage of the coronaviruses (CoVs) replication cycle. In addition, a proteomic study reported that the anti-SARS-CoV-2 activity of INM could be also ascribed to its ability to inhibit human prostaglandin E synthase type 2 (PGES-2), a host protein which interacts with the SARS-CoV-2 NSP7 protein. Although INM does not potently inhibit SARS-CoV-2 replication in infected Vero E6 cells, here we have explored for the first time the application of the Proteolysis Targeting Chimeras (PROTACs) technology in order to develop more potent INM-derived PROTACs with anti-CoV activity. In this study, we report the design, synthesis, and biological evaluation of a series of INM-based PROTACs endowed with antiviral activity against a panel of human CoVs, including different SARS-CoV-2 strains. Two PROTACs showed a strong improvement in antiviral potency compared to INM. Molecular modelling studies support human PGES-2 as a potential target of INM-based antiviral PROTACs, thus paving the way toward the development of host-directed anti-CoVs strategies. To the best of our knowledge, these PROTACs represent the first-in-class INM-based PROTACs with antiviral activity and also the first example of the application of PROTACs to develop pan-coronavirus agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.