Cerebrospinal fluid (CSF) has frequently been studied to explore the total metal concentrations in patients with neurodegenerative diseases. Some examples of neurologic diseases include but are not limited to intracerebral hemorrhage, intraventricular hemorrhage, traumatic brain injury, subarachnoid hemorrhage and hydrocephalus. In this study, however, a comprehensive approach was begun using metallomics methods. First, two molecular weight cutoff filters were used to separate CSF constituents by molecular weight. The remaining CSF was then separated with capillary liquid chromatography/normal bore liquid chromatography and analyzed with inductively coupled mass spectrometry (ICPMS). With this ICPMS screening, a possible iron associated protein was suggested by nanoliquid chromatography-CHIP/ion trap mass spectrometry (nanoLC-CHIP/ITMS) identification in conjunction with a Spectrum Mill database search. In this preliminary study, three different types of pooled CSF were partially characterized by their metal (Pb, Mg, Zn, Fe and Cu) containing species with suggestions for fuller studies. Chemical `differences' in the CSF and metal constituents suggests some utility in this analysis for understanding some of the complications observed following subarachnoid hemorrhage.
An initial study of protein phosphorylation in human cerebral spinal fluid (CSF) is described. CSF is an important body fluid for study of proteins and metabolites and may lead to the ultimate development of molecular markers to predict neurological diseases or their complications, such as in the case of hemorrhagic stroke. The use of capillary liquid chromatography coupled to inductively coupled plasma mass spectrometry (capLC-ICPMS) for screening using 31 P as the internal elemental tag atom at ultratrace levels, in combination with molecular mass spectrometry using Spectrum Mill and MASCOT database search engines for peptide identification, is a novel approach in its application to CSF relevant phosphopeptides and phosphorylated proteins. CapLC-ICPMS combined with nano liquid chromatography electrospray ionization, ion trap mass spectrometry (nanoLC-CHIP/ITMS), was utilized for initial experiments with CSF. Specific low-level screening for 31 P containing compounds is accomplished, and nanoLC-CHIP/ITMS provided the corresponding peptide information and subsequent protein identifications. The fractions containing 31 P from screening by the capLC-ICPMS were collected offline and analyzed separately with nanoLC-CHIP/ ITMS. Synthetic phosphopeptides were used to test the method and to estimate lowest quantifiable limits for phosphorus. Tryptically digested β-casein was then used to demonstrate the viability of the methodology for the complex CSF matrix from hemorrhagic stroke patients while also analyzing for native phosphopeptides in the CSF.
Determination of organophosphorus fire retardants and plasticizers at trace levels in wastewater is described. In this work, microwave assisted extraction (MAE) and solid-phase microextraction (SPME) are used for sample preparation to extract and preconcentrate the analytes, followed by analysis by gas chromatography coupled to inductively coupled plasma mass spectrometry (GC-ICP-MS) for phosphorus-specific detection. Gas chromatography coupled to time of flight mass spectrometry (GC-TOF-MS) was used to confirm the organphosphorus fire retardants in wastewater. The detection limits of organophosphorus fire retardants (OPFRs) were 29 ng L(-1) for tri-n-butyl phosphate (TnBP), 45 ng for L(-1) for tris(2-butoxyethyl)phosphate (TBEP), and 50 ng L(-1) for tris(2-ethylhexyl)phosphate (TEHP). Optimized extraction conditions were performed at 65 degrees C for 30 min and with 10% NaCl. Application of MAE during the sample preparation prior to the SPME allowed the detection of tris(2-ethylhexyl) phosphate, which has been difficult to determine in previous work. Application of the method to wastewater samples resulted in detecting 3.1 microg L(-1) P from TnBP, 5.0 microg L(-1) P from TBEP, and 4.0 microg L(-1) P from TEHP. The presence of these compounds were also confirmed by SPME-GC-TOF-MS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.