Colorectal cancer is one of the most common cancers worldwide with almost 700,000 deaths every year. Detection of colorectal cancer at an early stage significantly improves patient survival. Cancer-specific autoantibodies found in sera of cancer patients can be used for pre-symptomatic detection of the disease. In this study we assess the zinc finger proteins ZNF346, ZNF638, ZNF700 and ZNF768 as capture antigens for the detection of autoantibodies in colorectal cancer. Sera from 96 patients with colorectal cancer and 35 control patients with no evidence of cancer on colonoscopy were analysed for the presence of ZNF-specific autoantibodies using an indirect ELISA. Autoantibodies to individual ZNF proteins were detected in 10–20% of colorectal cancer patients and in 0–5.7% of controls. A panel of all four ZNF proteins resulted in an assay specificity of 91.4% and sensitivity of 41.7% for the detection of cancer patients in a cohort of non-cancer controls and colorectal cancer patients. Clinicopathological and survival analysis revealed that ZNF autoantibodies were independent of disease stage and did not correlate with disease outcome. Since ZNF autoantibodies were shared between patients and corresponding ZNF proteins showed similarities in their zinc finger motifs, we performed an in silico epitope sequence analysis. Zinc finger proteins ZNF700 and ZNF768 showed the highest sequence similarity with a bl2seq score of 262 (E-value 1E-81) and their classical C2H2 ZNF motifs were identified as potential epitopes contributing to their elevated immunogenic potential. Our findings show an enhanced and specific immunogenicity to zinc finger proteins, thereby providing a multiplexed autoantibody assay for minimally invasive detection of colorectal cancer.
Antibody-based separation methods, such as immunoaffinity chromatography (IAC), are powerful purification and isolation techniques. Antibodies isolated using these techniques have proven highly efficient in applications ranging from clinical diagnostics to environmental monitoring. Immunoaffinity chromatography is an efficient antibody separation method which exploits the binding efficiency of a ligand to an antibody. Essential to the successful design of any IAC platform is the optimization of critical experimental parameters such as (a) the biological affinity pair, (b) the matrix support, (c) the immobilization coupling chemistry, and (d) the effective elution conditions. These elements and the practicalities of their use are discussed in detail in this review. At the core of all IAC platforms is the high affinity interactions between antibodies and their related ligands; hence, this review entails a brief introduction to the generation of antibodies for use in immunoaffinity chromatography and also provides specific examples of their potential applications.
Herein we report the application of oxidative artificial chemical nucleases as novel agents for protein engineering. The complex ion [Cu(Phen)2(H2O)](2+) (CuPhen; Phen = 1,10-phenanthroline) was applied under Fenton-type conditions against a recombinant antibody fragment specific for prostate-specific antigen (PSA) and compared against traditional DNA shuffling using DNase I for the generation of recombinant mutagenesis libraries. We show that digestion and re-annealment of single chain variable fragment (scFv) coding DNA is possible using CuPhen. Results indicate recombinant library generation in this manner may generate novel clones—not accessible through the use of DNase I—with CuPhen producing highly PSA-specific binding antibodies identified by surface plasmon resonance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.