Background:We aimed to study the angiogenic profile based on histomorphological markers in endometrial carcinomas in relation to imaging parameters obtained from preoperative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted imaging (DWI) and to explore the potential value of these markers to identify patients with poor outcome.Methods:In fifty-four surgically staged endometrial carcinoma patients, immunohistochemical staining with factor VIII and Ki67 allowed assessment of microvessel density (MVD) and microvascular proliferation reflecting tumour angiogenesis. In the same patients, preoperative pelvic DCE-MRI and DWI allowed the calculation of parameters describing tumour microvasculature and microstructure in vivo.Results:Microvascular proliferation was negatively correlated to tumour blood flow (Fb) (r=−0.36, P=0.008), capillary permeability surface area product (PS) (r=−0.39, P=0.004) and transfer from the blood to extravascular extracellular space (EES) (Ktrans) (r=−0.40, P=0.003), and was positively correlated to tumour volume (r=0.34; P=0.004). High-tumour microvascular proliferation, low Fb and low Ktrans were all significantly associated with reduced progression/recurrence-free survival (P<0.05).Conclusion:Disorganised angiogenesis with coexisting microvascular proliferation and low tumour blood flow is a poor prognostic factor supporting that hypoxia is associated with progression and metastatic spread in endometrial carcinomas.
Hypoxia is frequent in solid tumors and linked to aggressive phenotypes and therapy resistance. We explored expression patterns of the proposed hypoxia marker HIF-1α in endometrial cancer (EC) and investigate whether preoperative functional imaging parameters are associated with tumor hypoxia. Expression of HIF-1α was explored both in the epithelial and the stromal tumor component. We found that low epithelial HIF-1α and high stromal HIF-1α expression were significantly associated with reduced disease specific survival in EC. Only stromal HIF-1α had independent prognostic value in Cox regression analysis. High stromal HIF-1α protein expression was rare in the premalignant lesions of complex atypical hyperplasia but increased significantly to invasive cancer. High stromal HIF-1α expression was correlated with overexpression of important genes downstream from HIF-1α, i.e. VEGFA and SLC2A1 (GLUT1). Detecting hypoxic tumors with preoperative functional imaging might have therapeutic benefits. We found that high stromal HIF-1α expression associated with high total lesion glycolysis (TLG) at PET/CT. High expression of a gene signature linked to hypoxia also correlated with low tumor blood flow at DCE-MRI and increased metabolism measured by FDG-PET. PI3K pathway inhibitors were identified as potential therapeutic compounds in patients with lesions overexpressing this gene signature. In conclusion, we show that high stromal HIF-1α expression predicts reduced survival in EC and is associated with increased tumor metabolism at FDG-PET/CT. Importantly; we demonstrate a correlation between tissue and imaging biomarkers reflecting hypoxia, and also possible treatment targets for selected patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.