Summary
Frontotemporal dementia (FTD) arises from neurodegeneration in the frontal, insular, and anterior temporal lobes. Autosomal dominant causes of FTD include heterozygous mutations in the GRN gene causing haploinsufficiency of progranulin (PGRN) protein. Recently, histone deacetylase (HDAC) inhibitors have been identified as enhancers of PGRN expression, although the mechanisms through which GRN is epigenetically regulated remain poorly understood. Using a chemogenomic toolkit, including optoepigenetic probes, we show that inhibition of Class I HDACs is sufficient to upregulate PGRN in human neurons and only inhibitors with apparent fast binding to their target HDAC complexes are capable of enhancing PGRN expression. Moreover, we identify regions in the GRN promoter in which elevated H3K27 acetylation and transcription factor EB (TFEB) occupancy correlate with HDAC-inhibitor mediated upregulation of PGRN. These findings have implications for epigenetic and cis-regulatory mechanisms controlling human GRN expression and may advance translational efforts to develop targeted therapeutics for treating PGRN-deficient FTD.
The activin type II receptor (ACVR2) contains 2 identical microsatellites in exon 3 and 10, but only the exon 10 microsatellite is frameshifted in MMR-defective colonic tumors. The reason for this selectivity is not known. We hypothesized that ACVR2 frameshifts were influenced by DNA sequences surrounding the microsatellite. We constructed plasmids in which exon 3 or 10 of ACVR2 were cloned +1bp out-of-frame of EGFP, allowing −1bp frameshift to express EGFP. Plasmids were stably-transfected into MMR-deficient cells, subsequent non-fluorescent cells sorted, cultured, and harvested for mutation analysis. We swapped DNA sequences flanking the exon 3 and 10 microsatellites to test our hypothesis. Native ACVR2 exon 3 and 10 microsatellites underwent heteroduplex formation (A7/T8) in hMLH1−/− cells, but only exon 10 microsatellites fully mutated (A7/T7) in both hMLH1−/− and hMSH6−/− backgrounds, showing selectivity for exon 10 frameshifts and inability of exon 3 heteroduplexes to fully mutate. Substituting nucleotides flanking the exon 3 microsatellite for nucleotides flanking the exon 10 microsatellite significantly reduced heteroduplex and full mutation in hMLH1−/− cells. When the exon 3 microsatellite was flanked by nucleotides normally surrounding the exon 10 microsatellite, fully-mutant exon 3 frameshifts appeared. Mutation selectivity for ACVR2 lies partly with flanking nucleotides surrounding each microsatellite.
Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.