Merging the late Quaternary Arctic paleoceanography into the Earth's global climate history remains challenging due to the lack of robust marine chronostratigraphies. Over ridges notably, low and variable sedimentation rates, scarce biogenic remains ensuing from low productivity and/or poor preservation, and oxygen isotope and paleomagnetic records differing from global stacks represent major impediments. However, as illustrate here based on consistent records from Mendeleev‐Alpha and Lomonosov Ridges, disequilibria between U‐series isotopes can provide benchmark ages. In such settings, fluxes of the particle‐reactive U‐daughter isotopes 230Th and 231Pa from the water column, are not unequivocally linked to sedimentation rates, but rather to sea‐ice rafting and brine production histories, thus to the development of sea‐ice factories over shelves during intervals of high relative sea level. The excesses in 230Th and 231Pa over fractions supported by their parent U‐isotopes, collapse down sedimentary sequences, due to radioactive decay, and provide radiometric benchmark ages of approximately 300 and 140 ka, respectively. These “extinction ages” point to mean sedimentation rates of ∼4.3 and ∼1.7 mm/ka, respectively, over the Lomonosov and Mendeleev Ridges, which are significantly lower than assumed in most recent studies, thus highlighting the need for revisiting current interpretations of Arctic lithostratigraphies in relation to the global‐scale late Quaternary climatostratigraphy.
Under modern conditions, sediments from the large continental shelves of the Arctic Ocean are mixed by currents, incorporated into sea ice and redistributed over the Arctic Basin through the Beaufort Gyre and Trans-Polar Drift major sea-ice routes. Here, compiling data from the literature and combining them with our own data, we explore how radiogenic isotopes (Sr, Pb and Nd) from Arctic shelf surface sediment can be used to identify inland and coastal sediment sources. Based on discriminant function analyses, the use of two-isotope systematics introduces a large uncertainty (ca. 50%) that prevents unequivocal identifications of regional shelf signatures. However, when using all three isotopic systems, shelf provinces can be distinguished within a ca. 23% uncertainty only, which is mainly due to isotopic overlaps between the Canadian Arctic Archipelago and the Barents-Kara seas areas. Whereas the Canadian Arctic shelf seems mostly influenced by Mackenzie River supplies, as documented by earlier studies, a clear Lena River signature cannot be clearly identified in the Laptev-Kara seas area. The few available data on sediments collected in sea-ice rafts suggest sea ice originating mostly from the Laptev Sea area, along with non-negligible contributions from the East Siberian and Kara seas. At last, whereas a clear radiogenic identity of the Mackenzie River in sediments can be identified in the Beaufort Sea margin, isotopic signatures from major Russian rivers cannot be deciphered in modern Siberian margin sediments because of an intense mixing by sea ice and currents of inland and coastal supplies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.