Surface-enhanced Raman spectroscopy (SERS) is an attractive tool for the sensing of molecules in the fields of chemical and biochemical analysis as it enables the sensitive detection of molecular fingerprint information even at the single-molecule level. In addition to traditional coinage metals in SERS analysis, recent research on noble-metal-free materials has also yielded highly sensitive SERS activity. This Minireview presents the recent development of noble-metal-free materials as SERS substrates and their potential applications, especially semiconductors and emerging graphene-based nanostructures. Rather than providing an exhaustive review of this field, possible contributions from semiconductor substrates, characteristics of graphene enhanced Raman scattering, as well as effect factors such as surface plasmon resonance, structure and defects of the nanostructures that are considered essential for SERS activity are emphasized. The intention is to illustrate, through these examples, that the promise of noble-metal-free materials for enhancing detection sensitivity can further fuel the development of SERS-related applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.