BackgroundRecent studies have shown that quantification of myocardial perfusion (MP) at stress and myocardial perfusion reserve (MPR) offer additional diagnostic and prognostic information compared to qualitative and semi-quantitative assessment of myocardial perfusion distribution in patients with coronary artery disease (CAD). Technical advancements have enabled fully automatic quantification of MP using cardiovascular magnetic resonance (CMR) to be performed in-line in a clinical workflow. The aim of this study was to validate the use of the automated CMR perfusion mapping technique for quantification of MP using 13N–NH3 cardiac positron emission tomography (PET) as the reference method.MethodsTwenty-one patients with stable CAD were included in the study. All patients underwent adenosine stress and rest perfusion imaging with 13N–NH3 PET and a dual sequence, single contrast bolus CMR on the same day. Global and regional MP were quantified both at stress and rest using PET and CMR.ResultsThere was good agreement between global MP quantified by PET and CMR both at stress (−0.1 ± 0.5 ml/min/g) and at rest (0 ± 0.2 ml/min/g) with a strong correlation (r = 0.92, p < 0.001; y = 0.94× + 0.14). Furthermore, there was strong correlation between CMR and PET with regards to regional MP (r = 0.83, p < 0.001; y = 0.87× + 0.26) with a good agreement (−0.1 ± 0.6 ml/min/g). There was also a significant correlation between CMR and PET with regard to global and regional MPR (r = 0.69, p = 0.001 and r = 0.57, p < 0.001, respectively).ConclusionsThere is good agreement between MP quantified by 13N–NH3 PET and dual sequence, single contrast bolus CMR in patients with stable CAD. Thus, CMR is viable in clinical practice for quantification of MP.
Background Block-sequential regularized expectation maximization (BSREM), commercially Q. Clear (GE Healthcare, Milwaukee, WI, USA), is a reconstruction algorithm that allows for a fully convergent iterative reconstruction leading to higher image contrast compared to conventional reconstruction algorithms, while also limiting noise. The noise penalization factor β controls the trade-off between noise level and resolution and can be adjusted by the user. The aim was to evaluate the influence of different β values for different activity time products (ATs = administered activity × acquisition time) in whole-body 18 F-fluorodeoxyglucose (FDG) positron emission tomography with computed tomography (PET-CT) regarding quantitative data, interpretation, and quality assessment of the images. Twenty-five patients with known or suspected malignancies, referred for clinical 18 F-FDG PET-CT examinations acquired on a silicon photomultiplier PET-CT scanner, were included. The data were reconstructed using BSREM with β values of 100–700 and ATs of 4–16 MBq/kg × min/bed (acquisition times of 1, 1.5, 2, 3, and 4 min/bed). Noise level, lesion SUV max , and lesion SUV peak were calculated. Image quality and lesion detectability were assessed by four nuclear medicine physicians for acquisition times of 1.0 and 1.5 min/bed position. Results The noise level decreased with increasing β values and ATs. Lesion SUV max varied considerably between different β values and ATs, whereas SUV peak was more stable. For an AT of 6 (in our case 1.5 min/bed), the best image quality was obtained with a β of 600 and the best lesion detectability with a β of 500. AT of 4 generated poor-quality images and false positive uptakes due to noise. Conclusions For oncologic whole-body 18 F-FDG examinations on a SiPM-based PET-CT, we propose using an AT of 6 (i.e., 4 MBq/kg and 1.5 min/bed) reconstructed with BSREM using a β value of 500–600 in order to ensure image quality and lesion detection rate as well as a high patient throughput. We do not recommend using AT < 6 since the risk of false positive uptakes due to noise increases.
Our results, as presented in this paper, describe how the second injection in a fractionation protocol will be affected by the first therapeutic amount. This new information might be useful in the optimization of radionuclide therapy.
Reduced administered activity, reduced acquisition time, and preserved image quality for the new CZT camera. Link to publication Citation for published version (APA): Oddstig, J., Hedeer, F., Jögi, J., Carlsson, M., Hindorf, C., & Engblom, H. (2013). Reduced administered activity, reduced acquisition time, and preserved image quality for the new CZT camera. Journal of Nuclear Cardiology, 20(1), 38-44. DOI: 10.1007/s12350-012-9634-6 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Abstract BackgroundFor a 1-day myocardial perfusion SPECT (MPS) the recommendations for administered activity stated in the EANM guidelines results in an effective dose of up to 16 mSv per patient. Recently, a gamma camera system, based on cadmium zinc telluride (CZT) technology, was introduced. This technique has the potential to reduce the effective dose and scan time compared to the conventional NaI gamma camera. The aim of this study was to investigate if the effective dose can be reduced with a preserved image quality using CZT-technology in MPS. MethodsIn total, 150 patients were included in the study. All underwent a 1-day 99m Tc-tetrofosmin stress-rest protocol and were divided into three subgroups (n=50 in each group) with 4 MBq/kg, 3 MBq/kg and 2.5 MBq/kg body weight of administered activity in the stress examination, respectively. The acquisition time was increased in proportion to the decrease in administered activity. All examinations were analysed for image quality by visual grading on a 4-point scale (1 = poor, 2 = adequate, 3 = good, 4 = excellent), by two expert readers. ResultsThe total effective dose (stress + rest) decreased from 9.3 mSv to 5.8 mSv comparing 4 MBq/kg to 2.5 MBq/kg body weight. For the patients undergoing stress examination only (35%) the effective dose, administrating 2.5 MBq/kg, was 1.4 mSv. The image acquisition times for 2.5 MBq/kg body weight were 475 s and 300 s (stress and rest) compared to 900 s for each when using conventional MPS. The average image quality was 3.7±0.5, 3.8±0.5 and 3.8±0.4 for the stress images and 3.5±0.6, 3.6±0.6 and 3.5±0.6 for the rest images and showed no statistically significant difference (p=0.62) between the 4 MBq/kg, 3 MBq/kg and 2.5 MBq/kg groups. ConclusionsThe new CZT technology can be used to considerably decrease the effective dose and acquisition time for MPS with preserved high image quality. KeywordsMyocardial perfusion imaging, SPECT, CZT detector, effective dose, image quality 2 Background Myocardial p...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.