Nonobese diabetic (NOD) mice provide an excellent model of type 1 diabetes. The genetic contribution to this disease is complex, with more than 20 loci implicated in diabetes onset. One of the challenges for researchers using the NOD mouse model (and, indeed, other models of spontaneous autoimmune disease) has been the high density of sequence variation within candidate chromosomal segments. Furthermore, the scope for analyzing many putative disease loci via gene targeting has been hampered by the lack of NOD embryonic stem (ES) cells. We describe here the derivation of NOD ES cell lines capable of generating chimeric mice after stable genetic modification. These NOD ES cell lines also show efficient germline transmission, with offspring developing diabetes. The availability of these cells will not only enable the dissection of closely linked loci and the role they have in the onset of type 1 diabetes but also facilitate the generation of new transgenics.
Summary
The role of regulatory T cells (Tregs) in maintaining self tolerance has been intensively researched and there is a growing consensus that a decline in Treg function is an important step towards the development of autoimmune diseases, including diabetes. Although we show here that CD25+ cells delay diabetes onset in non‐obese diabetic (NOD) mice, we found, in contrast to previous reports, neither an age‐related decline nor a decline following onset of diabetes in the frequency of CD4+ CD25+ Foxp3+ regulatory T cells. Furthermore, we demonstrate that CD4+ CD25+ cells from both the spleen and pancreatic draining lymph nodes of diabetic and non‐diabetic NOD mice are able to suppress the proliferation of CD4+ CD25– cells to a similar extent in vitro. We also found that pretreatment of NOD mice with anti‐CD25 antibody allowed T cells with a known reactivity to islet antigen to proliferate more in the pancreatic draining lymph nodes of NOD mice, regardless of age. In addition, we demonstrated that onset of diabetes in NOD.scid mice is faster when recipients are co‐administered splenocytes from diabetic NOD donors and anti‐CD25. Finally, we found that although diabetic CD4+ CD25+ T cells are not as suppressive in cotransfers with effectors into NOD.scid recipients, this may not indicate a decline in Treg function in diabetic mice because over 10% of CD4+ CD25+ T cells are non‐Foxp3 and the phenotype of the CD25– contaminating population significantly differs in non‐diabetic and diabetic mice. This work questions whether onset of diabetes in NOD mice is associated with a decline in Treg function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.