Magnetic resonance (MR) imaging has opened new horizons in the diagnosis and treatment of many musculoskeletal diseases of the ankle and foot. It demonstrates abnormalities in the bones and soft tissues before they become evident at other imaging modalities. The exquisite soft-tissue contrast resolution, noninvasive nature, and multiplanar capabilities of MR imaging make it especially valuable for the detection and assessment of a variety of soft-tissue disorders of the ligaments (eg, sprain), tendons (tendinosis, peritendinosis, tenosynovitis, entrapment, rupture, dislocation), and other soft-tissue structures (eg, anterolateral impingement syndrome, sinus tarsi syndrome, compressive neuropathies [eg, tarsal tunnel syndrome, Morton neuroma], synovial disorders). MR imaging has also been shown to be highly sensitive in the detection and staging of a number of musculoskeletal infections including cellulitis, soft-tissue abscesses, and osteomyelitis. In addition, MR imaging is excellent for the early detection and assessment of a number of osseous abnormalities such as bone contusions, stress and insufficiency fractures, osteochondral fractures, osteonecrosis, and transient bone marrow edema. MR imaging is increasingly being recognized as the modality of choice for assessment of pathologic conditions of the ankle and foot.
Magnetic resonance (MR) imaging is the imaging modality of choice for evaluation of acute traumatic musculotendinous injuries of the knee. Three discrete categories of acute injuries to the musculotendinous unit can be defined: muscle contusion, myotendinous strain, and tendon avulsion. Among the quadriceps muscles, the rectus femoris is the most susceptible to injury at the myotendinous junction due to its superficial location, predominance of type II fibers, eccentric muscle action, and extension across two joints. Among the muscles of the pes anserinus, the sartorius is the most susceptible to strain injury due to its superficial location and biarticular course. The classic fusiform configuration of the semimembranosus along with a propensity for eccentric actions also make it prone to strain injury. MR imaging findings associated with rupture of the iliotibial tract include discontinuity and edema, which are best noted on coronal images. The same mechanism of injury that tears the arcuate ligament from its fibular insertion can also result in avulsion injury of the biceps femoris. The gastrocnemius muscle is prone to strain injury due to its action across two joints and its superficial location. Injuries of the muscle belly and myotendinous junction of the popliteus are far more common than tendinous injuries.
Purpose To collect diffusion tensor imaging (DTI) at multiple diffusion times Td in skeletal muscle in normal subjects and chronic exertional compartment syndrome (CECS) patients and analyze the data with the random permeable barrier model (RPBM) for biophysical specificity. Materials and Methods Using an IRB-approved HIPAA-compliant protocol, seven patients with clinical suspicion of CECS and eight healthy volunteers underwent DTI of the calf muscle in a Siemens MAGNETOM Verio 3-T scanner at rest and after treadmill exertion at 4 different diffusion times. Radial diffusion values λrad were computed for each of 7 different muscle compartments and analyzed with RPBM to produce estimates of free diffusivity D0, fiber diameter a, and permeability κ. Fiber diameter estimates were compared with measurements from literature autopsy reference for several compartments. Response factors (post/pre-exercise ratios) were computed and compared between normal controls and CECS patients using a mixed-model two-way analysis of variance. Results All subjects and muscle compartments showed nearly time-independent diffusion along and strongly time-dependent diffusion transverse to the muscle fibers. RPBM estimates of fiber diameter correlated well with corresponding autopsy reference. D0 showed significant (p<0.05) increases with exercise for volunteers, and a increased significantly (p<0.05) in volunteers. At the group level, response factors of all three parameters showed trends differentiating controls from CECS patients, with patients showing smaller diameter changes (p=0.07), and larger permeability increases (p=0.07) than controls. Conclusions Time-dependent diffusion measurements combined with appropriate tissue modeling can provide enhanced microstructural specificity for in vivo tissue characterization. In CECS patients, our results suggest that high-pressure interfiber edema elevates free diffusion and restricts exercise-induced fiber dilation. Such specificity may be useful in differentiating CECS from other disorders or in predicting its response to either physical therapy or fasciotomy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.