Biophotovoltaics is a relatively new discipline in microbial fuel cell research. The basic idea is the conversion of light energy into electrical energy using photosynthetic microorganisms. The microbes will use their photosynthetic apparatus and the incoming light to split the water molecule. The generated protons and electrons are harvested using a bioelectrochemical system. The key challenge is the extraction of electrons from the microbial electron transport chains into a solid-state anode. On the cathode, a corresponding electrochemical counter reaction will consume the protons and electrons, e.g., through the oxygen reduction to water, or hydrogen formation. In this review, we are aiming to summarize the current state of the art and point out some limitations. We put a specific emphasis on cyanobacteria, as these microbes are considered future workhorses for photobiotechnology and are currently the most widely applied microbes in biophotovoltaics research. Current progress in biophotovoltaics is limited by very low current outputs of the devices while a lack of comparability and standardization of the experimental set-up hinders a systematic optimization of the systems. Nevertheless, the fundamental questions of redox homeostasis in photoautotrophs and the potential to directly harvest light energy from a highly efficient photosystem, rather than through oxidation of inefficiently produced biomass are highly relevant aspects of biophotovoltaics.
A carbon-free energy supply is essential to sustain our future. Biophotovoltaics (BPV) provides a promising solution for hydrogen supply by directly coupling light-driven water splitting to hydrogen formation using oxygenic photoautotrophic cyanobacteria. However, BPV is currently limited by its low photon-to-current efficiency, and current experimental setups at a miniaturized scale hinder the rational investigation of the process and thus system optimization. In this article, we developed and optimized a new technical-scale (~250 ml working volume) BPV platform with defined and controllable operating parameters. Factors that interfered with reproducible and stable current output signals were identified and adapted. We found that the classical BG11 medium, used for the cultivation of cyanobacteria and also in many BPV studies, caused severe interferences in the bioelectrochemical experiments. An optimized nBG11 medium guaranteed a low and stable background current in the BPV reactor, regardless of the presence of light and/or mediators. As proof-of-principle, a very high long-term light-dependent current output (peak current of over 20 µA) was demonstrated in the new set-up over 12 days with living Synechocystis sp. PCC6803 cells and validated with appropriate controls. These results report the first reliable BPV platform generating reproducible photocurrent while still allowing quantitative investigation, rational optimization, and scale-up of BPV processes.
Abundant solar energy can be a sustainable source of energy. This chapter highlights recent advancements, challenges, and future scenarios in bioartificial photosynthesis, which is a new subset of bioelectrochemical systems (BESs) and technologies. BES technologies exploit the catalytic interactions between biological moieties and electrodes. At the nexus of BES and photovoltaics, this review focuses on light-harvesting technologies based on bioartificial photosynthesis. Such technologies are promising because electrical energy is generated from sunlight and water without the need for additional organic feedstock. This review focuses on photosynthetic electron generation and transfer and compares the current status of bioartificial photosynthesis with other artificial systems that mimic the chemistry of photosynthetic energy transformation.The fundamental principles and the operation of functional units of bioartificial photosynthesis are addressed. Selected photobioelectrochemical systems employed to obtain light-driven electric currents from photosynthetic organisms are presented. The achievable current output and theoretical maxima are revisited by conceptualizing operational and process window techniques. Factors affecting overall photocurrent efficiency, performance limitations, and scaleup bottlenecks are highlighted in view of enhancing the energy conversion efficiency of photobioelectrochemical systems. To finish, the challenges associated with bioartificial photosynthetic technologies are outlined. Graphical Abstract Operational window for (bio-)artificial photosynthesis. Green circle in the upper right corner: development objective for research and engineering efforts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.