Pyridoxal 5′-phosphate (PLP)-dependent enzymes are found ubiquitously in nature and are involved in a variety of biological pathways, from natural product synthesis to amino acid and glucose metabolism. The first structure of a PLP-dependent enzyme was reported over 40 years ago, and since that time, there is a steady wealth of structural and functional information revealed for a wide array of these enzymes. A functional mechanism that is gaining more appreciation due to its relevance in drug design is that of protein allostery, where binding of a protein or ligand at a distal site influences the structure, organization, and function at the active site. Here, we present a review of current structure-based mechanisms of allostery for select members of each PLP-dependent enzyme family. Knowledge of these mechanisms may have a larger potential for identifying key similarities and differences among enzyme families that can eventually be exploited for therapeutic development.
5‐Aminolevulinic acid synthase (ALAS) is a pyridoxal 5′‐phosphate (PLP)‐dependent enzyme that catalyzes the first and rate‐limiting step of heme biosynthesis in α‐proteobacteria and several non‐plant eukaryotes. All ALAS homologs contain a highly conserved catalytic core, but eukaryotes also have a unique C‐terminal extension that plays a role in enzyme regulation. Several mutations in this region are implicated in multiple blood disorders in humans. In Saccharomyces cerevisiae ALAS (Hem1), the C‐terminal extension wraps around the homodimer core to contact conserved ALAS motifs proximal to the opposite active site. To determine the importance of these Hem1 C‐terminal interactions, we determined the crystal structure of S. cerevisiae Hem1 lacking the terminal 14 amino acids (Hem1 ΔCT). With truncation of the C‐terminal extension, we show structurally and biochemically that multiple catalytic motifs become flexible, including an antiparallel β‐sheet important to Fold‐Type I PLP‐dependent enzymes. The changes in protein conformation result in an altered cofactor microenvironment, decreased enzyme activity and catalytic efficiency, and ablation of subunit cooperativity. These findings suggest that the eukaryotic ALAS C‐terminus has a homolog‐specific role in mediating heme biosynthesis, indicating a mechanism for autoregulation that can be exploited to allosterically modulate heme biosynthesis in different organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.