Based on a molecular-mechanism-based anticancer drug discovery program enabled by an innovative femtomedicine approach, we have found a previously unknown class of non-platinum-based halogenated molecules (called FMD compounds) as potent antitumor agents for effective treatment of cancers. Here, we present in vitro and in vivo studies of the compounds for targeted chemotherapy of cervical, breast, ovarian, and lung cancers. Our results show that these FMD agents led to DNA damage, cell cycle arrest in the S phase, and apoptosis in cancer cells. We also observed that such a FMD compound caused an increase of reduced glutathione (GSH, an endogenous antioxidant) levels in human normal cells, while it largely depleted GSH in cancer cells. We correspondingly found that these FMD agents exhibited no or little toxicity toward normal cells/tissues, while causing significant cytotoxicity against cancer cells, as well as suppression and delay in tumor growth in mouse xenograft models of cervical, ovarian, breast and lung cancers. These compounds are therefore a previously undiscovered class of potent antitumor agents that can be translated into clinical trials for natural targeted chemotherapy of multiple cancers.
There is a compelling need to develop anticancer therapies that target cancer cells and tissues. Arising from innovative femtomedicine studies, a new class of non-platinum-based halogenated molecules (called FMD molecules) that selectively kill cancer cells and protect normal cells in treatments of multiple cancers has been discovered. This article reports the first observation of the radiosensitizing effects of such compounds in combination with ionizing radiation for targeted radiotherapy of a variety of cancers. We present in vitro and in vivo studies focused on combination with radiotherapy of cervical, ovarian, head and neck, and lung cancers. Our results demonstrate that treatments of various cancer
Advances in gene testing have enabled a high rate of mutation detection, particularly when tumour tissue is genotyped. Genetic analysis is integral to the management of retinoblastoma patients allowing enhanced follow-up care, avoidance of unnecessary examinations, family screening, counselling and reproductive planning, with early tumour detection in predisposed individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.