Abstract. Two types of refractory bricks were used in reaction tests with slag from a production kiln for iron ore pellet production. Electron microscopy was used to characterize morphological changes at the slag/brick interface and active chemical reactions. Phases such as kalsilite, nepheline and potassium β-alumina form, in a layered structure, as a consequence of alkali metals migration in the brick. Larger hematite grains (50-100 μm) in the slag remain at the original slag/brick interface, while smaller grains dissolve and move through the partly dissolved brick bulk, and forms micrometer sized needle shaped crystals deeper in the lining material. Thermodynamic simulations predict the formation of a solid solution between hematite and corundum which is also observed in the reaction zone after extended time periods.
A mathematical model based on the equations of particle motion was used to predict inclusion behavior observed at steel‐slag interface in an in‐situ Confocal Scanning Laser Microscope. The results show that the model can be used to explain some phenomena observed in the experiments. In addition, a parameter study was done in order to illustrate how the model can be used to study the effect of physical properties on the inclusion behavior at the slag‐steel interface for some typical industrial ladle metallurgy conditions. Furthermore, to study the effect of steel temperature, sulfur and oxygen content in the steel, slag and inclusion density as well as initial inclusion velocity on the inclusions behavior at the slag‐steel interface. The results show that the temperature and initial velocity was of less importance and that the oxygen content in the steel had a larger influence on the inclusion behavior than the sulfur content in the steel.
Studies of inclusion behaviour at the metal/slag interface is of great importance for the steel industry in order to achieve better control of both the size and amount of the inclusions, as well as improving the steel quality and the casting process. In this work agglomeration of liquid Al 2 O 3 -CaO particles at both steel/argon gas and steel/slag interfaces was studied with a confocal scanning laser microscope. In addition, agglomeration of liquid Al 2 O 3 -CaO-SiO 2 inclusions present in the slag was investigated. The results showed that liquid inclusions more easily agglomerated to semiliquid inclusions than to liquid inclusions. Moreover, the agglomeration of liquid particles was found to be improved remarkably when the particles were present in the slag compared to when they were in the steel/slag interface.
Ore-based steelmaking generates various residues including dusts, sludges, scales and slags. Recycling of these residues within the process or via other applications is essential for sustainable production of steel. In blast furnace (BF) ironmaking, the gas-cleaning equipment generally recovers the particles in the off-gas as dust and sludge. Traditionally, the dry dust is recycled via the sinter or, in the case of pellet-based BF operation, via cold-bonded briquettes and injection. As the BF sludge mainly consists of iron and carbon, this residue is of interest to recycle together with the BF dust. However, depending on how the BF is operated, these two residues are more or less the major outlet of zinc from the furnace. Thus, to limit the recycled load of zinc, both materials cannot be recycled without dezincing the sludge prior to recycling. Dezincing and recycling of the low-zinc fraction of BF sludge via sinter have been reported whereas recycling via cold-bonded briquettes has not been performed. In the present study, cold-bonded briquettes containing the low-zinc fraction of dezinced BF sludge were charged as basket samples to the LKAB Experimental Blast Furnace (EBF). The excavated basket samples from the quenched EBF suggested that additions of up to 20 wt.% of upgraded BF sludge was feasible in terms of reducibility and strength. Based on these results, BF sludge were added to cold-bonded briquettes and charged in industrial-scale trials. The trials indicated that the annual generation of BF sludge, after dezincing, could be recycled to the BF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.