The inflammatory cytokine tumor necrosis factor-α (TNF-α) is a pathogenic factor in acute and chronic kidney disease. TNF-α is known to alter expression of epithelial tight junction (TJ) proteins; however, the underlying mechanisms and the impact of this effect on epithelial functions remain poorly defined. Here we describe a novel biphasic effect of TNF-α on TJ protein expression. In LLC-PK1 tubular cells, short-term (1-6 h) TNF-α treatment selectively elevated the expression of the channel-forming TJ protein claudin-2. In contrast, prolonged (>8 h) TNF-α treatment caused a marked downregulation in claudin-2 and an increase in claudin-1, -4, and -7. The early increase and the late decrease in claudin-2 expression involved distinct mechanisms. TNF-α slowed claudin-2 degradation through ERK, causing the early increase. This increase was also mediated by the EGF receptor and RhoA and Rho kinase. In contrast, prolonged TNF-α treatment reduced claudin-2 mRNA levels and promoter activity independent from these signaling pathways. Electric Cell-substrate Impedance Sensing measurements revealed that TNF-α also exerted a biphasic effect on transepithelial resistance (TER) with an initial decrease and a late increase. Thus there was a good temporal correlation between TNF-α-induced claudin-2 protein and TER changes. Indeed, silencing experiments showed that the late TER increase was at least in part caused by reduced claudin-2 expression. Surprisingly, however, claudin-2 silencing did not prevent the early TER drop. Taken together, the TNF-α-induced changes in claudin-2 levels might contribute to TER changes and could also play a role in newly described functions of claudin-2 such as proliferation regulation.
T-cell-redirecting bispecific antibodies have emerged as a new class of therapeutic agents designed to simultaneously bind to T cells via CD3 and to tumor cells via tumor-cell-specific antigens (TSA), inducing T-cell-mediated killing of tumor cells. The promising preclinical and clinical efficacy of TSAxCD3 antibodies is often accompanied by toxicities such as cytokine release syndrome due to T-cell activation. How the efficacy and toxicity profile of the TSAxCD3 bispecific antibodies depends on the binding affinity to CD3 remains unclear. Here, we evaluate bispecific antibodies that were engineered to have a range of CD3 affinities, while retaining the same binding affinity for the selected tumor antigen. These agents were tested for their ability to kill tumor cells in vitro, and their biodistribution, serum half-life, and anti-tumor activity in vivo. Remarkably, by altering the binding affinity for CD3 alone, we can generate bispecific antibodies that maintain potent killing of TSA + tumor cells but display differential patterns of cytokine release, pharmacokinetics, and biodistribution. Therefore, tuning CD3 affinity is a promising method to improve the therapeutic index of T-cell-engaging bispecific antibodies.
Necrotizing enterocolitis (NEC) is a severe gastrointestinal complication of prematurity. Using suspension and imaging mass cytometry coupled with single-cell RNA sequencing, we demonstrate severe inflammation in patients with NEC. NEC mucosa could be subtyped by an influx of three distinct neutrophil phenotypes (immature, newly emigrated, and aged). Furthermore, CD16+CD163+ monocytes/Mϕ, correlated with newly emigrated neutrophils, were specifically enriched in NEC mucosa, found adjacent to the blood vessels, and increased in circulation of infants with surgical NEC, suggesting trafficking from the periphery to areas of inflammation. NEC-specific monocytes/Mϕ transcribed inflammatory genes, including TREM1, IL1A, IL1B, and calprotectin, and neutrophil recruitment genes IL8, CXCL1, CXCL2, CXCL5 and had enrichment of gene sets in pathways involved in chemotaxis, migration, phagocytosis, and reactive oxygen species generation. In summary, we identify a novel subtype of inflammatory monocytes/Mϕ associated with NEC that should be further evaluated as a potential biomarker of surgical NEC and a target for the development of NEC-specific therapeutics.
Monoclonal antibodies that block the programmed cell death 1 (PD-1) checkpoint have revolutionized cancer immunotherapy. However, many major tumor types remain unresponsive to anti–PD-1 therapy, and even among responsive tumor types, most of the patients do not develop durable antitumor immunity. It has been shown that bispecific antibodies activate T cells by cross-linking the TCR/CD3 complex with a tumor-specific antigen (TSA). The class of TSAxCD3 bispecific antibodies have generated exciting results in early clinical trials. We have recently described another class of “costimulatory bispecifics” that cross-link a TSA to CD28 (TSAxCD28) and cooperate with TSAxCD3 bispecifics. Here, we demonstrate that these TSAxCD28 bispecifics (one specific for prostate cancer and the other for epithelial tumors) can also synergize with the broader anti–PD-1 approach and endow responsiveness—as well as long-term immune memory—against tumors that otherwise do not respond to anti–PD-1 alone. Unlike CD28 superagonists, which broadly activate T cells and induce cytokine storm, TSAxCD28 bispecifics display little or no toxicity when used alone or in combination with a PD-1 blocker in genetically humanized immunocompetent mouse models or in primates and thus may provide a well-tolerated and “off the shelf” combination approach with PD-1 immunotherapy that can markedly enhance antitumor efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.