The onset of heart failure is typically preceded by cardiac hypertrophy, a response of the heart to increased workload, a cardiac insult such as a heart attack or genetic mutation. Cardiac hypertrophy is usually characterized by an increase in cardiomyocyte size and thickening of ventricular walls. Initially, such growth is an adaptive response to maintain cardiac function; however, in settings of sustained stress and as time progresses, these changes become maladaptive and the heart ultimately fails. In this review, we discuss the key features of pathological cardiac hypertrophy and the numerous mediators that have been found to be involved in the pathogenesis of cardiac hypertrophy affecting gene transcription, calcium handling, protein synthesis, metabolism, autophagy, oxidative stress and inflammation. We also discuss new mediators including signaling proteins, microRNAs, long noncoding RNAs and new findings related to the role of calcineurin and calcium-/calmodulin-dependent protein kinases. We also highlight mediators and processes which contribute to the transition from adaptive cardiac remodeling to maladaptive remodeling and heart failure. Treatment strategies for heart failure commonly include diuretics, angiotensin converting enzyme inhibitors, angiotensin II receptor blockers and β-blockers; however, mortality rates remain high. Here, we discuss new therapeutic approaches (e.g., RNA-based therapies, dietary supplementation, small molecules) either entering clinical trials or in preclinical development. Finally, we address the challenges that remain in translating these discoveries to new and approved therapies for heart failure.
The benefits of exercise on the heart are well recognized, and clinical studies have demonstrated that exercise is an intervention that can improve cardiac function in heart failure patients. This has led to significant research into understanding the key mechanisms responsible for exercise-induced cardiac protection. Here, we summarize molecular mechanisms that regulate exercise-induced cardiac myocyte growth and proliferation. We discuss in detail the effects of exercise on other cardiac cells, organelles, and systems that have received less or little attention and require further investigation. This includes cardiac excitation and contraction, mitochondrial adaptations, cellular stress responses to promote survival (heat shock response, ubiquitin-proteasome system, autophagy-lysosomal system, endoplasmic reticulum unfolded protein response, DNA damage response), extracellular matrix, inflammatory response, and organ-to-organ crosstalk. We summarize therapeutic strategies targeting known regulators of exercise-induced protection and the challenges translating findings from bench to bedside. We conclude that technological advancements that allow for in-depth profiling of the genome, transcriptome, proteome and metabolome, combined with animal and human studies, provide new opportunities for comprehensively defining the signaling and regulatory aspects of cell/organelle functions that underpin the protective properties of exercise. This is likely to lead to the identification of novel biomarkers and therapeutic targets for heart disease.
miRNAs are small non-coding RNAs (ncRNAs), which regulate gene expression. Here, the authors describe the contribution of miRNAs to cardiac biology and disease. They discuss various strategies for manipulating miRNA activity including antisense oligonucleotides (antimiRs, blockmiRs), mimics, miRNA sponges, Tough Decoys and miRNA mowers. They review developments in chemistries (e.g., locked nucleic acid) and modifications (sugar, 'ZEN', peptide nucleic acids) and miRNA delivery tools (viral vectors, liposomes, nanoparticles, pHLIP). They summarize potential miRNA therapeutic targets for heart disease based on preclinical studies. Finally, the authors review current progress of miRNA therapeutics in clinical development for HCV and cancer, and discuss challenges that will need to be overcome for similar therapies to enter the clinic for patients with cardiac disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.