BackgroundHuntington's disease (HD) is a fatal inherited neurodegenerative disease, caused by a
BackgroundSporadic late-onset nemaline myopathy (SLONM) is a rare, late-onset muscle disorder, characterized by the presence of nemaline rods in muscle fibers. Phenotypic characterization in a large cohort and a comprehensive overview of SLONM are lacking.MethodsWe studied the clinico-pathological features, treatment and outcome in a large cohort of 76 patients with SLONM, comprising 10 new patients and 66 cases derived from a literature meta-analysis (PubMed, 1966–2016), and compared these with 15 reported HIV-associated nemaline myopathy (HIV-NM) cases. In 6 SLONM patients, we performed a targeted next-generation sequencing (NGS) panel comprising 283 myopathy genes.ResultsSLONM patients had a mean age at onset of 52 years. The predominant phenotype consisted of weakness and atrophy of proximal upper limbs in 84%, of proximal lower limbs in 80% and both in 67%. Other common symptoms included axial weakness in 68%, as well as dyspnea in 55% and dysphagia in 47% of the patients. In 53% a monoclonal gammopathy of unknown significance (MGUS) was detected in serum. The mean percentage of muscle fibers containing rods was 28% (range 1–63%). In 2 cases ultrastructural analysis was necessary to detect the rods. The most successful treatment in SLONM patients (all with MGUS) was autologous peripheral blood stem cell therapy. A targeted NGS gene panel in 6 SLONM patients (without MGUS) did not reveal causative pathogenic variants.In a comparison of SLONM patients with and without MGUS, the former comprised significantly more males, had more rapid disease progression, and more vacuolar changes in muscle fibers. Interestingly, the muscle biopsy of 2 SLONM patients with MGUS revealed intranuclear rods, whereas this feature was not seen in any of the biopsies from patients without paraproteinemia.Compared to the overall SLONM cohort, significantly more HIV-NM patients were male, with a lower age at onset (mean 34 years). In addition, immunosuppression was more frequently applied with more favorable outcome, and muscle biopsies revealed a significantly higher degree of inflammation and necrosis in this cohort. Similar to SLONM, MGUS was present in half of the HIV-NM patients.ConclusionsSLONM presents a challenging, but important differential diagnosis to other neuromuscular diseases of adult onset. Investigations for MGUS and HIV should be performed, as they require distinct but often effective therapeutic approaches. Even though SLONM and HIV-NM show some differences, there exists a large clinico-pathological overlap between the 2 entities.Electronic supplementary materialThe online version of this article (doi:10.1186/s13023-017-0640-2) contains supplementary material, which is available to authorized users.
Diffusion tensor imaging (DTI) is rarely applied in spinal cord injury (SCI). The aim of this study was to correlate diffusion properties after SCI with electrophysiological and neurological measures. Nineteen traumatic cervical SCI subjects and 28 age-matched healthy subjects participated in this study. DTI data of the spinal cord were acquired with a Philips Achieva 3 T MR scanner using an outer volume suppressed, reduced field of view (FOV) acquisition with oblique slice excitation and a single-shot EPI readout. Neurological and electrophysiological measures, American Spinal Injury Association (ASIA) impairment scale scores, and motor (MEP) and somatosensory evoked potentials (SSEP) were assessed in SCI subjects. Fractional anisotropy (FA) values were decreased in the SCI subjects compared to the healthy subjects. In upper cervical segments, the decrease in FA was significant for the evaluation of the entire cross-sectional area of the spinal cord, and for corticospinal and sensory tracts. A decreasing trend was also found at the thoracic level for the corticospinal tracts. The decrease of DTI values correlated with the clinical completeness of SCI, and with SSEP amplitudes. The reduced DTI values seen in the SCI subjects are likely due to demyelination and axonal degeneration of spinal tracts, which are related to clinical and electrophysiological measures. A reduction in DTI values in regions remote from the injury site suggests their involvement with wallerian axonal degeneration. DTI can be used for the quantitative evaluation of the extent of spinal cord damage, and eventually to monitor the effects of future regeneration-inducing treatments. This article has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof. This article has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof. Abstract
Mutations in the fukutin-related protein (FKRP) have recently been demonstrated to cause limb girdle muscular dystrophy type 2I (LGMD2I), one of the most common forms of the autosomal recessive LGMDs in Europe. We performed a systematic clinical and muscle MRI assessment in 6 LGMD2I patients and compared these findings with those of 14 patients with genetically confirmed diagnosis of other forms of autosomal recessive LGMDs or dystrophinopathies. All LGMD2I patients had a characteristic clinical phenotype with predominant weakness of hip flexion and adduction, knee flexion and ankle dorsiflexion. These findings were also mirrored on MRI of the lower extremities which demonstrated marked signal changes in the adductor muscles, the posterior thigh and posterior calf muscles. This characteristic clinical and MRI phenotype was also seen in LGMD2A. However, in LGMD2A there was a selective involvement of the medial gastrocnemius and soleus muscle in the lower legs which was not seen in LGMD2I. The pattern in LGMD2A and LGMD2I were clearly different from the one seen in alpha-sarcoglycanopathy and dystrophinopathy type Becker which showed marked signal abnormalities in the anterior thigh muscles. Our results indicate that muscular MRI is a powerful tool for differentiating LGMD2I from other forms of autosomal recessive LGMDs and dystrophinopathies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.