We present a photometric stereo technique that operates on time-lapse sequences captured by static outdoor webcams over the course of several months. Outdoor webcams produce a large set of uncontrolled images subject to varying lighting and weather conditions. We first automatically select a suitable subset of the captured frames for further processing, reducing the dataset size by several orders of magnitude. A camera calibration step is applied to recover the camera response function, the absolute camera orientation, and to compute the light directions for each image. Finally, we describe a new photometric stereo technique for non-Lambertian scenes and unknown light source intensities to recover normal maps and spatially varying materials of the scene
Reconstructing the shape of an object from images is an important problem in computer vision that has led to a variety of solution strategies. This survey covers photometric stereo, i.e., techniques that exploit the observed intensity variations caused by illumination changes to recover the orientation of the surface. In the most basic setting, a diffuse surface is illuminated from at least three directions and captured with a static camera. Under some conditions, this allows to recover per-pixel surface normals. Modern approaches generalize photometric stereo in various ways, e.g., relaxing constraints on lighting, surface reflectance and camera placement or creating different types of local surface estimates.Starting with an introduction for readers unfamiliar with the subject, we discuss the foundations of this field of research. We then summarize important trends and developments that emerged in the last three decades. We put a focus on approaches with the potential to be applied in a broad range of scenarios. This implies, e.g., simple capture setups, relaxed model assumptions, and increased robustness requirements. The goal of this review is to provide an overview of the diverse concepts and ideas on the way towards more general techniques than traditional photometric stereo.
View interpolation and image-based rendering algorithms often produce visual artifacts in regions where the 3D scene geometry is erroneous, uncertain, or incomplete. We introduce ambient point clouds constructed from colored pixels with uncertain depth, which help reduce these artifacts while providing non-photorealistic background coloring and emphasizing reconstructed 3D geometry. Ambient point clouds are created by randomly sampling colored points along the viewing rays associated with uncertain pixels. Our realtime rendering system combines these with more traditional rigid 3D point clouds and colored surface meshes obtained using multiview stereo. Our resulting system can handle larger-range view transitions with fewer visible artifacts than previous approaches.
View interpolation and image-based rendering algorithms often produce visual artifacts in regions where the 3D scene geometry is erroneous, uncertain, or incomplete. We introduce ambient point clouds constructed from colored pixels with uncertain depth, which help reduce these artifacts while providing non-photorealistic background coloring and emphasizing reconstructed 3D geometry. Ambient point clouds are created by randomly sampling colored points along the viewing rays associated with uncertain pixels. Our realtime rendering system combines these with more traditional rigid 3D point clouds and colored surface meshes obtained using multiview stereo. Our resulting system can handle larger-range view transitions with fewer visible artifacts than previous approaches
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with đŸ’™ for researchers
Part of the Research Solutions Family.